

Complete MATH

IIT-JEE · CBSE eBOOKS CLASS 11&12th

CLASS 11th

Permutations & Combinations

Permutations & Combinations

01. Factorial

Factorial The continued product of first n natural numbers is called the "n factorial" and is denoted by $\lfloor n \text{ or } n! \text{ i.e.}$ $n! = 1 \times 2 \times 3 \times 4 \times ... \times (n - 1) \times n$

02. Exponent of Prime p In Factorial n

Let p be a prime number and n be a positive integer. Let E_p (n) denote the exponent of the prime p in the positive inter n. Then,

$$E_p(n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots \left\lfloor \frac{n}{p^s} \right\rfloor,$$

where s is the largest positive integer such that $p^{s} \leq n < p^{s+1}$

03. Some Useful Symbols

3

If *n* is a natural number and *r* is a positive integer satisfying $0 \le r \le n$, then the natural number $\frac{n!}{(n-r)!}$ is denoted by the symbol ${}^{n}P_{r}$ or, *P* (*n*, *r*).

i.e.,
$${}^{n}P_{r} = P(n,r) = \frac{n!}{(n-r)!}$$

If *n* is *a* natural number and *r* is a positive integer satisfying $0 \le r \le n$, then the natural number $\frac{n!}{(n-r)! r!}$ is denoted by the symbol ${}^{n}C_{r}$, or, C(n, r). Thus,

$${}^{n}C_{r} = C (n, r) = \frac{n!}{(n-r)! r!}$$

Property I ${}^{n}C_{r} = {}^{n}C_{n-r}$, for $0 \leq r \leq n$.

Remark The above property can be restated as follow: If x and y are non-negative integers such that ${}^{n}C_{x} = {}^{n}C_{y}$, then x = y or, x + y = n.

Property II Let *n* and *r* be non-negative integers such that $1 \le r \le n$. Then, ${}^{n}C_{r} = \frac{n}{r} \cdot {}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r} \quad {}^{n}C_{r-l} = {}^{n+l}C_{r}$

Property III Let *n* and *r* be non-negative integers such that $1 \le r \le n$.

Then, ${}^{n}C_{r} = \frac{n}{r} \cdot {}^{n-1}C_{r-1}$

Property IV If $1 \le r \le n$, then n. ${}^{n-l}C_{r-l} = (n - r + 1)^n C_{r-l}$ **Property V** If n is even, then the greatest value of nC_r $(0 \le r \le n)$ is ${}^nC_{n/2}$.

Property VI If n is odd, then the greatest value of ${}^{n}C_{r}$ $(0 \le r \le n)$ is $\frac{{}^{n}C_{n+1}}{2}$ or, $\frac{{}^{n}C_{n-1}}{2}$

04. Fundamental Principles of Counting

Fundamental Principle of Multiplication If there are two jobs such that one of them can be completed in m ways, and when it has been completed in any one of these m ways, second job can be completed in n ways; then the jobs in succession can be completed in $m \times n$ ways.

Remark The above principle can be extended for any finite number of jobs as stated below: If there are n jobs J_1 , J_2 , ... J_n such that job J_i can be performed independently in m_i ways in which all the jobs can be performed is $m_1 \times m_2 \times m_3 \times ... \times m_n$.

Fundamental Principle of Addition If there are two jobs such that they can be performed independently in m and n ways respectively, then either of the two jobs can be performed in (m + n) ways.

05. Permutations and Combinations

Combination Each of the different selections made by takin some or all of a number of distinct objects or items, irrespective of their arrangements or order in which they are placed, is called a combination.

Permutations Each of the different arrangements which can be made by taking some or all of a number of distinct objects is called a permutation.

Results I Let r and n be positive integers such that $1 \le r \le n$. Then, prove that the number of all permutations of n distinct items or objects taken r at a time is $n(n - 1) (n - 2) (n - 3) \dots (n - (r - 1))$

$$n (n - 1) (n - 2) \dots (n - (r - 1))$$

= $\frac{n(n-1)(n-2)\dots(n-(r-1))(n-r)!}{(n-r)!} = \frac{n!}{(n-r)!} = {}^{n}P_{r}$

Results II The number of all permutations (arrangements) of n distinct objects taken all at a time is n!.

4

So, the total number of arrangements (permutations) of n-distinct items, taking r at a time is ${}^{n}P_{r}$ or P(n, r).