$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 11th

Permutations \& Combinations

Permutations \& Combinations

01. Factorial

Factorial The continued product of first n natural numbers is called the " n factorial" and is denoted by $\lfloor n$ or n! i.e.
$n!=1 \times 2 \times 3 \times 4 \times \ldots \times(n-1) \times n$

02. Exponent of Prime \boldsymbol{p} In Factorial \boldsymbol{n}

Let p be a prime number and n be a positive integer.
Let $E_{p}(n)$ denote the exponent of the prime p in the positive inter n. Then,

$$
E_{p}(n!)=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\ldots\left[\frac{n}{p^{s}}\right],
$$

where s is the largest positive integer such that $p^{s} \leq \mathrm{n}<p^{s+1}$

03. Some Useful Symbols

If n is a natural number and r is a positive integer satisfying $0 \leq r \leq n$, then the natural number $\frac{n!}{(n-r)!}$ is denoted by the symbol ${ }^{n} P_{r}$ or, $P(n, r)$.
i.e., ${ }^{n} P_{r}=P(n, r)=\frac{n!}{(n-r)!}$

If n is a natural number and r is a positive integer satisfying $0 \leq r \leq n$, then the natural number $\frac{n!}{(n-r)!r!}$ is denoted by the symbol ${ }^{n} C_{r}$, or, $C(n, r)$. Thus,

$$
{ }^{n} C_{r}=C(n, r)=\frac{n!}{(n-r)!r!}
$$

Property I $\quad{ }^{n} C_{r}={ }^{n} C_{n-r}$, for $0 \leq r \leq n$.

Remark The above property can be restated as follow:
If x and y are non-negative integers such that ${ }^{n} C_{x}={ }^{n} C_{y}$, then $x=y$ or, $x+y=n$.

Property II Let n and r be non-negative integers such that $1 \leq r \leq n$.
Then, ${ }^{n} C_{r}=\frac{n}{r} \cdot{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
Property III Let n and r be non-negative integers such that $l \leq r \leq n$.
Then, ${ }^{n} C_{r}=\frac{n}{r} \cdot{ }^{n-1} C_{r-1}$
Property IV If $1 \leq r \leq n$, then $n .{ }^{n-1} C_{r-1}=(n-r+1)^{n} C_{r-1}$
Property \mathbf{V} If n is even, then the greatest value of ${ }^{n} C_{r}(0 \leq r \leq n)$ is ${ }^{n} C_{n / 2}$.

Permutations \& Combinations

Property VI If n is odd, then the greatest value of ${ }^{n} C_{r}(0 \leq r \leq n)$ is $\frac{{ }^{n} C_{n+1}}{2}$ or, $\frac{{ }^{n} C_{n-1}}{2}$

04. Fundamental Principles of Counting

Fundamental Principle of Multiplication If there are two jobs such that one of them can be completed in m ways, and when it has been completed in any one of these m ways, second job can be completed in n ways; then the jobs in succession can be completed in $m \times n$ ways.

Remark The above principle can be extended for any finite number of jobs as stated below: If there are n jobs $J_{1}, J_{2}, \ldots J_{n}$ such that job J_{i} can be performed independently in m_{i} ways in which all the jobs can be performed is $m_{1} \times m_{2} \times m_{3} \times \ldots \times m_{n}$.

Fundamental Principle of Addition If there are two jobs such that they can be performed independently in m and n ways respectively, then either of the two jobs can be performed in $(m+n)$ ways.

05. Permutations and Combinations

Combination Each of the different selections made by takin some or all of a number of distinct objects or items, irrespective of their arrangements or order in which they are placed, is called a combination.
Permutations Each of the different arrangements which can be made by taking some or all of a number of distinct objects is called a permutation.

Results I Let r and n be positive integers such that $1 \leq r \leq n$. Then, prove that the number of all permutations of n distinct items or objects taken r at a time is

$$
n(n-1)(n-2)(n-3) \ldots(n-(r-1))
$$

Remark 1 We have,
$n(n-1)(n-2) \ldots(n-(r-1))$
$=\frac{n(n-1)(n-2) \ldots(n-(r-1))(n-r)!}{(n-r)!}=\frac{n!}{(n-r)!}={ }^{n} P_{r}$
So, the total number of arrangements (permutations) of n-distinct items, taking r at a time is ${ }^{n} P_{r}$ or $P(n, r)$.

Results II The number of all permutations (arrangements) of n distinct objects taken all at a time is n!.

