$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 11th

Binomial Expansion

Binomial Expansion

01. Binomial Theorem

Theorem If x and a are real numbers, then for all $n \in N$,

$$
\begin{aligned}
& \begin{array}{l}
(x+a)^{n}={ }^{n} C_{0} x^{n} a^{0}+{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2 a^{2}+\ldots \ldots . .} \\
\quad+\ldots+{ }^{n} C_{r} x^{n-r} a^{r}+\ldots+{ }^{n} C_{n-1} x^{1} a^{n-1}+{ }^{n} C_{n} x^{0} a^{n}
\end{array} \\
& \text { i.e. }(x+a)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{n-r} a^{r}
\end{aligned}
$$

Remark The above expansion is also valid when x and a are complex numbers.

Properties of Binomial Expansion

Property I We have,

$$
(x+a)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{n-r} a^{r}
$$

Since r can have values from 0 to n, the total number of terms in the expansion is $(n+1)$.
Property II The sum of indices of x and a in each term is n.
Property III We have,

$$
\begin{aligned}
& { }^{n} C_{r}={ }^{n} C_{n-r^{\prime}} \quad r=0,1,2, \ldots, n \\
& \Rightarrow{ }^{n} C_{0}={ }^{n} C_{n},{ }^{n} C_{1}={ }^{n} C_{n-1},{ }^{n} C_{2}={ }^{n} C_{n-2}=\ldots
\end{aligned}
$$

So, the coefficients of terms equidistant from the beginning and the end are equal. These coefficients are known as the binomial coeffi-cients.
Property IV Replacing a by-a, in expansion of $(x+a)^{n}$, we get

$$
\begin{aligned}
& (x-a)^{n}={ }^{n} C_{0} x^{n} a^{0}-{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}-{ }^{n} C_{3} x^{n-3} a^{3} \\
& \ldots . .+\ldots+(-1)^{r n} C_{r} x^{n-r} a^{r}+\ldots+(-1)^{n n} C_{n} x^{0} a^{n} . \\
& \text { i.e., } \quad(x-a)^{n}=\sum_{r=0}^{n}(-1)^{r n} C_{r} x^{n-r} a^{r}
\end{aligned}
$$

Property V Putting $x=1$ and $a=x$ in the expansion of $(x+a)^{n}$, we get

$$
\begin{aligned}
& (1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\ldots+{ }^{n} C_{r} x^{r}+\ldots+{ }^{n} C_{n} x^{n} \\
& \text { i.e., } \quad(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}
\end{aligned}
$$

This is the expansion of $(1+x)^{n}$ in ascending powers of x.
Property VI Putting $a=1$ in the expansion of $(x+a)^{n}$, we get

$$
\left.\begin{array}{rl}
(1+x)^{n}={ }^{n} C_{0} x^{n} & +{ }^{n} C_{1} x^{n-1}+{ }^{n} C_{2} x^{n-2}+\ldots \\
& +{ }^{n} C_{r} x^{n-r}+\ldots+{ }^{n} C_{n-1} x+{ }^{n} C_{n}
\end{array}\right]=\sum_{r=0}{ }^{n} C_{r} x^{n-r} .
$$

This is the expansion of $1+x)^{n}$ in descending powers of x.

General Term In a Binomial Expansion

We have,

$$
\begin{aligned}
& (x+a)^{n}={ }^{n} C_{0} x^{n} a^{0}+{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots \\
& +\ldots .+{ }^{n} C_{r} x^{n-r} a^{r}+\ldots+{ }^{n} C_{n} x^{0} a^{n}
\end{aligned}
$$

