$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 11th

Conic Sections

Conic Sections

01. The Circle

A circle is defined as the locus of a point which moves in a plane such that its distance from a fixed point in that plane is always constant.

The fixed point is called the centre of the circle and the constant distance is called the radius of the circle.
In Figure, P is the moving point, C is the fixed point and $C P$ is equal to the radius.

Figure

Standard Equation of A Circle

Result The equation of a circle whose centre is at (h, k) and radius a is given.

$$
(x-h)^{2}+(y-k)^{2}=a^{2}
$$

NOTE If the centre of the circle is at the origin and radius is a, then from the above form the equation of the circle is $x^{2}+y^{2}=a^{2}$

Some Particular Cases of the Central Form

The equation of a circle with centre at (h, k) and radius equal to a, is

$$
\begin{equation*}
(x-h)^{2}+(y-k)^{2}=a^{2} \tag{i}
\end{equation*}
$$

(I) When the centre of the circle coincides with the origin i.e., $h=k=0$

Then the equation (i) reduces to $x^{2}+y^{2}=a^{2}$
(II) When the circle passes through the origin

The equation of the circle (i) then becomes

$$
(x-h)^{2}+(y-k)^{2}=h^{2}+k^{2} \text { or, } x^{2}+y^{2}-2 h x-2 k y=0
$$

(III) When the circle touches x-axis

The equation of the circles is $(x-h)^{2}+(y-a)^{2}=a^{2}$ or, $\quad x^{2}+y^{2}-2 h x-2 a y+h^{2}=0$ (IV) When the circle touches y-axis

The equation of the circle is

$$
(x-a)^{2}+(y-k)^{2}=a^{2} \text { or, } x^{2}+y^{2}-2 a x-2 k y+k^{2}=0
$$

Conic Sections

General Equation of A Circle

The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ always represents a circle whose centre is at $(-g,-f)$ and, Radius $=\sqrt{g^{2}+f^{2}-c}$

NOTE 1 The equation $x^{2}+y^{2}+2 g x+2 f y+c=0$ represents a circle of radius
$\sqrt{g^{2}+f^{2}-c}$.
If $g^{2}+f^{2}-c>0$ then the radius of the circle is real and hence the circle is also real.
If $g^{2}+f^{2}-c=0$ then the radius of the circle is zero. Such a circle is known as a point circle.
If $g^{2}+f^{2}-c<0$, then the radius $\sqrt{g^{2}+f^{2}-c}$ of the circle is imaginary but the centre is real. Such a circle is called an imaginary circle as it is not possible to draw such a circle.

NOTE 2 Special features of the general equation
$x^{2}+y^{2}+2 g x+2 f y+c=0$ of the circle are:
(i) It is quadratic in both x and y.
(ii) Coefficient of $x^{2}=$ Coefficient of y^{2}.

In solving problems it is advisable to keep the coefficient of x^{2} and y^{2} unity.
(iii) There is no term containing xy i.e., the coefficient of $x y$ is zero.
(iv) It contains three arbitrary constants viz. g, f and c.

NOTE 3 The equation $a x^{2}+a y^{2}+2 g x+2 f y+c=0, a \neq 0$ also represents a circle. This equation can also be written as

$$
x^{2}+y^{2}+\frac{2 g}{a} x+\frac{2 f}{a} y+\frac{c}{a}=0 .
$$

The coordinates of the centre are $\left(-\frac{g}{a},-\frac{f}{a}\right)$
and, Radius $=\sqrt{\frac{g^{2}}{a^{2}}+\frac{f^{2}}{a^{2}}-\frac{c}{a}}$

NOTE 4 On comparing the general equation

$$
x^{2}+y^{2}+2 g x+2 f y+c=0
$$

of a circle with the general equation of second degree

$$
a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

we find that it represents a circle if $a=b$
i.e., Coefficient of $x^{2}=$ Coefficient of y^{2}
and, $h=0$ i.e., Coefficient of $x y=0$.

Circle Passing Through Three Points

Let $x^{2}+y^{2}+2 g x+2 f y+c=0$
be the circle passing through three non-collinear points $P\left(x_{1}, y_{1}\right), \mathrm{Q}\left(x_{2}, y_{2}\right)$, and $R\left(x_{3}, y_{3}\right)$.
Then,

$$
\begin{equation*}
x_{1}^{2}+y_{1}^{2}+2 g x_{1}+2 f y_{1}+c=0 \tag{ii}
\end{equation*}
$$

