$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 11th

Introduction to 3-D Geometry

01. Coordinates of A Point In Space

Three mutually perpendicular lines in space define three mutually perpendicular planes which in turn divide the space into eight parts known as octants and the lines are known as the coordinate axes.

Figure
Let $X^{\prime} O X, Y^{\prime} O Y$ and $Z^{\prime} O Z$ be three mutually perpendicular lines intersecting at O. Let O be the origin and the lines $X^{\prime} O X, Y^{\prime} O Y$ and $Z^{\prime} O Z$ be x-axis, y-axis and z-axis respectively. These three lines are also called the rectangular axes of coordinates. The planes containing the lines $X^{\prime} O X, Y^{\prime} O Y$ and $Z^{\prime} O Z$ in pairs determine three mutually perpendicular planes $X O Y, Y O Z$ and $Z O X$ or simply $X Y, Y Z$ and $Z X$ which are called rectangular coordinate planes.

Let P be a point in space. Through P draw three planes parallel to the coordinate planes to meet the axes in A, B and C respectively. Let $O A=x, O B=y$ and $O C=z$. These three real numbers taken in this order determined by the point P are called the coordinates of the point P, written as $(x, y, z), x, y, z$ are positive or negative according as they are measured along positive or negative directions of the coordinate axes.

Also, the coordinates of the point P are the perpendicular distance from P on the three mutually rectangular coordinate planes YOZ, ZOX and XOY respectively.
Further, the coordinates of a point are the distances from the origin of the feet of the perpendiculars from the point on the respective coordinate axes.

