

Complete MATH

IIT-JEE · CBSE eBOOKS CLASS 11&12th

CLASS 12th Relations & Functions

01. Types of Relations

(A) VOID, UNIVERSAL AND IDENTITY RELATIONS

Void Relation-

Let A be a set. Then, $\phi \subseteq A \times A$ and so it is a relation on A. This relation is called the void or empty relation on set A.

Universal Relation-

Let A be a set. Then, $A \times A \subseteq A \times A$ and so it is a relation on A. This relation is called the universal relation on A.

NOTE It is to note here that the void relation and the universal relation on a set A are respectively the smallest and the largest relations on set A. Both the empty (or void) relation and the universal relation are sometimes. They are called trivial relations.

Identity Relation-

Let A be a set. Then, the relation $I_A = \{(a, a) : a \in A\}$ on A is called the identity relation on A.

In other words, a relation I_A on A is called the identity relation i.e., if every element of A is related to itself only.

(B) REFLEXIVE, SYMMETRIC, TRANSITIVE, ANTISYMMETRIC RELATIONS Reflexive Relation-

A relation R on a set A is said to be reflexive if every element of A is related to itself.

Thus, R is reflexive $\Leftrightarrow (a, a) \in R$ for all $a \in A$.

A relation R on a set A is not reflexive if there exists an element $a \in A$ such that $(a, a) \not\in R$

Symmetric Relation-

A relation R on a set A is said to be a symmetric relation iff $(a,b) \in R \Longrightarrow (b,a) \in R$ for all $a, b \in A$

i.e. $aRb \Rightarrow bRa$ for all $a, b \in A$.

Transitive Relation-

Let A be any set. A relation R on A is said to be a transitive relation iff $(a,b) \in R$ and $(b,c) \in R$

 \Rightarrow $(a,c) \in R$ for all $a,b,c \in A$.

i.e. aRb and bRc

 $\Rightarrow aRc \text{ for all } a, b, c \in A.$

Antisymmetric Relation-

Let A be any set. A relation R on set A is said to be an antisymmetric relation iff $(a,b) \in R$ and $(b,a) \in R \Longrightarrow a = b$ for all $a, b \in A$

3

NOTE So It follows from this definition that if $(a, b) \in R$ and $(b, a) \notin R$, then also R is an antisymmetric relation.

(C) Equivalence Relation

- A relation R on a set A is said to be an equivalence relation on A iff
- (i) it is reflexive i.e. $(a, a) \in R$ for all $a \in A$
- (ii) it is symmetric i.e. $(a, b) \in R \Rightarrow (b, a) \in R$ for all $a, b \in A$
- (iii) it is transitive i.e. $(a, b) \in R$ and $(b, c) \in R \Rightarrow (a, c) \in R$ for all $a, b, c \in A$.

02. Some Results on Relations

RESULT 1

If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A.

OR

The intersection of two equivalence relations on a set is an equivalence relation on the set.

RESULT 2

The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.

RESULT 3

If R is an equivalence relation on a set A, then R^{-1} is also an equivalence relation on A.

OR

The inverse of an equivalence relation is an equivalence relation.

03. Kinds of Functions

ONE-ONE FUNCTION (INJECTION)

A function $f: A \rightarrow B$ is said to be a one-one function or an injection if different elements of A have different images in B.

Thus, $f: A \rightarrow B$ is one-one

- $\Leftrightarrow \quad a \neq b \Longrightarrow f(a) \neq f(b) \text{ for all } a, b \in A$
- $\Leftrightarrow \quad f(a) = f(b) \Rightarrow a = b \text{ for all } a, b \in A$

Algorithm

- (i) Take two arbitrary elements x, y (say) in the domain of f.
- (ii) Put f(x) = f(y)
- (iii) Solve f(x) = f(y). If f(x) = f(y) gives x = y only, then $f : A \rightarrow B$ is a one-one function (or an injection). Otherwise not.

4

NOTE 🖙	(i)	Let $f: A \rightarrow B$ and let $x, y \in A$. Then, $x = y \Rightarrow f(x) = f(y)$ is always true from
		the definition. But, $f(x) = f(y) \Rightarrow x = y$ is true only when f is one-one.

(ii) If A and B are two sets having m and n elements respectively such that $m \le n$, then total number of one-one functions from A to B is ${}^{n}C_{m} \times m!$.

MANY-ONE FUNCTION

A function $f: A \rightarrow B$ is said to be a many-one function if two or more elements of set A have the same image in B.

Thus, $f: A \rightarrow B$ is a many-one function if there exist $x, y \in A$ such that $x \neq y$ but f(x) = f(y).

NOTE So In other words, $f: A \rightarrow B$ is many-one function if it is not a one-one function.

ONTO FUNCTION (SURJECTION)

A function $f: A \rightarrow B$ is said to be an onto function or a surjection if every element of B is the f-image of some element of A i.e., if f(A) = B of range of f is the co-domain of f. Thus, $f: A \rightarrow B$ is a surjection iff for each $b \in B$, there exists $a \in A$ such that f(a) = b.

INTO FUNCTION. A function $f: A \rightarrow B$ is an into function if there exists an element in B having no pre-image in A.

In other words, $f: A \rightarrow B$ is an into function if it is not an onto function.

Algorithm

Let $f: A \rightarrow B$ be the given function.

- (i) Choose an arbitrary element y in B.
- (ii) Put f(x) = y

5

- (iii) Solve the equation f(x) = y for x and obtain x in terms of y. Let x = g(y).
- (iv) If for all values of $y \in B$, the values of x obtained from x = g(y) are in A, then f is onto. If there are some $y \in B$ for which x, given by x = g(y), is not in A. Then, f is not onto.

BIJECTION (ONE-ONE ONTO FUNCTION)

A function $f: A \rightarrow B$ is a bijection if it is one-one as well as onto. In other words, a function $f: A \rightarrow B$ is a bijection, if

- (i) it is one-one i.e. $f(x) = f(y) \Rightarrow x = y$ for all x, $y \in A$.
- (ii) it is onto i.e. for all $y \in B$, there exists $x \in A$ such that f(x) = y.

REMARK If A and B are two finite sets and $f: A \rightarrow B$ is a function, then

- (i) $f \text{ is an injection} \Rightarrow n(A) \le n(B)$
- (ii) f is an surjection \Rightarrow $n(B) \le n(A)$
- (iii) f is an bijection $\Rightarrow n(A) = n(B)$.