$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 12th

Relations \&
 Functions

01. Types of Relations

(A) VOID, UNIVERSAL AND IDENTITY RELATIONS

Void Relation-
Let A be a set. Then, $\phi \subseteq A \times A$ and so it is a relation on A. This relation is called the void or empty relation on set A.

Universal Relation-

Let A be a set. Then, $A \times A \subseteq A \times A$ and so it is a relation on A. This relation is called the universal relation on A.

NOTE It is to note here that the void relation and the universal relation on a set A are respectively the smallest and the largest relations on set A.
Both the empty (or void) relation and the universal relation are sometimes. They are called trivial relations.

Identity Relation-

Let A be a set. Then, the relation $I_{A}=\{(a, a): a \in A\}$ on A is called the identity relation on A.
In other words, a relation I_{A} on A is called the identity relation i.e., if every element of A is related to itself only.
(B) REFLEXIVE, SYMMETRIC, TRANSITIVE, ANTISYMMETRIC RELATIONS

Reflexive Relation-

A relation R on a set A is said to be reflexive if every element of A is related to itself.
Thus, R is reflexive $\Leftrightarrow(a, a) \in R$ for all $a \in A$.
A relation R on a set A is not reflexive if there exists an element $a \in A$ such that $(a, a) \notin R$.

Symmetric Relation-

A relation R on a set A is said to be a symmetric relation iff
$(a, b) \in R \Rightarrow(b, a) \in R$ for all $a, b \in A$
i.e. $\quad a R b \Rightarrow b R a$ for all $a, b \in A$.

Transitive Relation-

Let A be any set. A relation R on A is said to be a transitive relation iff
$(a, b) \in R$ and $(b, c) \in R$
$\Rightarrow(a, c) \in R$ for all $a, b, c \in A$.
i.e. $a R b$ and $b R c$
$\Rightarrow a R c$ for all $a, b, c \in A$.

Antisymmetric Relation-

Let A be any set. A relation R on set A is said to be an antisymmetric relation iff $(a, b) \in R$ and $(b, a) \in R \Rightarrow a=b$ for all $a, b \in A$

It follows from this definition that if $(a, b) \in R$ and $(b, a) \notin R$, then also R is an antisymmetric relation.

(C) Equivalence Relation

A relation R on a set A is said to be an equivalence relation on A iff
(i) it is reflexive i.e. $(a, a) \in R$ for all $a \in A$
(ii) it is symmetric i.e. $(a, b) \in R \Rightarrow(b, a) \in R$ for all $a, b \in A$
(iii) it is transitive i.e. $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R$ for all $a, b, c \in A$.

02. Some Results on Relations

RESULT 1

If R and S are two equivalence relations on a set A, then $R \cap S$ is also an equivalence relation on A.

OR

The intersection of two equivalence relations on a set is an equivalence relation on the set.

RESULT 2

The union of two equivalence relations on a set is not necessarily an equivalence relation on the set.

RESULT 3

If R is an equivalence relation on a set A, then R^{-1} is also an equivalence relation on A.

OR

The inverse of an equivalence relation is an equivalence relation.

03. Kinds of Functions

ONE-ONE FUNCTION (INJECTION)

A function $f: A \rightarrow B$ is said to be a one-one function or an injection if different elements of A have different images in B.
Thus, $\quad f: A \rightarrow B$ is one-one
$\Leftrightarrow \quad a \neq b \Rightarrow f(a) \neq f(b)$ for all $a, b \in A$
$\Leftrightarrow \quad f(a)=f(b) \Rightarrow a=b$ for all $a, b \in A$

Algorithm

(i) Take two arbitrary elements x, y (say) in the domain of f.
(ii) Put $f(x)=f(y)$
(iii) Solve $f(x)=f(y)$. If $f(x)=f(y$ gives $\mathrm{x}=\mathrm{y}$ only, them $f: A \rightarrow B$ is a one-one function (or an injection). Otherwise not.

NOTE (i) Let $f: A \rightarrow B$ and let $x, y \in A$. Then, $x=y \Rightarrow f(x)=f(y)$ is always true from the definition. But, $f(x)=f(y) \Rightarrow x=y$ is true only when f is one-one.
(ii) If A and B are two sets having m and n elements respectively such that $m \leq n$, then total number of one-one functions from A to B is ${ }^{n} C_{m} \times m!$.

MANY-ONE FUNCTION

A function $f: A \rightarrow B$ is said to be a many-one function if two or more elements of set A have the same image in B.
Thus, $f: A \rightarrow B$ is a many-one function if there exist $x, y \in A$ such that $x \neq y$ but $f(x)=$ $f(y)$.

NOTE In other words, $f: A \rightarrow B$ is many-one function if it is not a one-one function.

ONTO FUNCTION (SURJECTION)

A function $f: A \rightarrow B$ is said to be an onto function or a surjection if every element of B is the f-image of some element of A i.e., if $f(A)=B$ of range of f is the co-domain of f. Thus, $f: A \rightarrow B$ is a surjection iff for each $b \in B$, there exists $a \in A$ such that $\mathrm{f}(\mathrm{a})=\mathrm{b}$.

INTO FUNCTION. A function $f: A \rightarrow B$ is an into function if there exists an element in B having no pre-image in A.
In other words, $f: A \rightarrow B$ is an into function if it is not an onto function.

Algorithm

Let $f: A \rightarrow B$ be the given function.
(i) Choose an arbitrary element y in B .
(ii) Put $f(x)=y$
(iii) Solve the equation $f(x)=y$ for x and obtain x in terms of y. Let $x=g(y)$.
(iv) If for all values of $y \in B$, the values of x obtained from $\mathrm{x}=\mathrm{g}(\mathrm{y})$ are in A , then f is onto. If there are some $y \in B$ for which x , given by $\mathrm{x}=\mathrm{g}(\mathrm{y})$, is not in A . Then, f is not onto.

BIJECTION (ONE-ONE ONTO FUNCTION)

A function $f: A \rightarrow B$ is a bijection if it is one-one as well as onto. In other words, a function $f: A \rightarrow B$ is a bijection, if
(i) it is one-one i.e. $f(x)=f(y) \Rightarrow x=y$ for all $\mathrm{x}, y \in A$.
(ii) it is onto i.e. for all $y \in B$, there exists $x \in A$ such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$.

REMARK If A and B are two finite sets and $f: A \rightarrow B$ is a function, then
(i) f is an injection $\Rightarrow n(A) \leq n(B)$
(ii) f is an surjection $\Rightarrow n(B) \leq n(A)$
(iii) f is an bijection $\Rightarrow n(A)=n(B)$.

