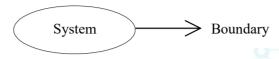


IIT-JEE · NEET · CBSE eBOOKS

CLASS 11&12th

CLASS 11th

Thermodynamics and Thermochemistry



Thermodynamics

01. Introduction

The study of energy transformations is the subject matter of thermodynamics.

Some Basics Terms

Surrounding

Types of system

- (I) Based or exchange of mass and energy
 - (i) Isolated system: It cannot exchange matter and energy with the surrounding.
 - (ii) Closed system: It can exchange energy but not matter.
 - (iii) Open system: It can exchange matter.
- (II) Based on system composition
 - (i) Homogeneous system: Made up of one phase only
 - (ii) Homogeneous system: More than one phase.

02. Properties of a System

Particular set of its measurable quantities.

Intensive property: value does not depend on the size (or mass) of the system.

Extensive property: value depends on the size (or mass) of the system.

Variables like P,V, T are State Functions or Stage Variables because their values depends only on initial and final state.

Path function

Function which depends on the path.

State functions: Pressure, volume, temperature, Gibb's free energy, internal energy, entropy

Path function: Work, heat, Loss of energy due to friction

03. Reversible and Irreversible Process

S.No.	Reversible process	Irreversible process			
1.	Driving force is infinitesimally small.	Driving force is large and finite. PV			
2.	A reversible heat transfer take place	Irreversible heat transfer take place			
	across temperature difference dT	across difference ΔT			
3.	It is an ideal process.	It is a real process			
4.	It take infinite time for completion	It take finite time for completion of			
	of process.	process.			

Cyclic Process $\Delta E = 0$ and $\Delta H = 0$

Isochoric Process $\Delta V = 0$ **Isobaric Process** $\Delta P = 0$

04. Work

PV- Work analysis:

For small displacement dx due to force F, work done on the system.

$$dw = F.dx$$

Also F = PA

$$dW = PA.dx$$

$$V = (\ell - x)A$$

$$\Rightarrow \qquad \mathrm{dV} = -\mathrm{A.dx} \qquad \qquad \Rightarrow \qquad \mathrm{dW} = -\mathrm{P_{ext.}}\mathrm{dV}$$

$$\Rightarrow \qquad W_{PV} = - \int_{-V_1}^{-V_2} \!\! P_{ext} dV$$

- Isothermal Process dT = 0
- Adiabatic process q = 0

05. Heat

Heat is defined as the energy that flows into or out of a system.

- (i) $q_V = nC_V dT$ (for constant volume process)
- (ii) $q_p = nC_p dT$ (for constant volume process)
- (iii) $C_{p,m} C_{v,m} = R$
- (iv) C_v & C_p depends on temperature even for an ideal gas. (C = a + bT + cT².....)

06. Internal Energy (E & U)

$$U = U_{Kinetic} + U_{Potential} + U_{Electronic} + U_{nuclear} +$$

NOTE (i) U is a state function & is an extensive property.

- (ii) $\Delta E + q_v$, heat supplied to a gas constant volume, since all the heat supplied goes to increase the internal energy of the gas.
- (iii) U = f(T, V)
- (iv) $dU = C_V dT$
- (v) $\Delta U + \int C_V dT$

07. Degree of Freedom and Equipartition principle

The degree of freedom in a molecule are given by the number of coordinates required to locate all the mass points (atoms) in a molecule. it has three degree of freedom corresponding to translation motion in the three independent spatial directions X,

Y and Z. If a molecule contain N atoms, each atom contributes these three degree of freedom, so the molecule has a total of 3N degree of freedom.

			n_{vib}	C_{V}		C_{P}		γ		
Atomicity		$n_{\rm u}$		n_{R_0}	Excl.Vib	Incl.Vib	Excl.Vib	Incl.Vib	Excl.Vib	Incl.Vib
Mono		3	0	0	$\frac{3}{2}$ R	$\frac{3}{2}$ R	$\frac{5}{2}$ R	$\frac{5}{2}$ R	$\frac{5}{3}$	$\frac{5}{3}$
Di		3	2	2	$\frac{5}{2}$ R	$\frac{7}{2}$ R	$\frac{7}{2}$ R	$\frac{9}{2}$ R	$\frac{7}{5}$	$\frac{9}{7}$
Tri	Linear	3	2	4	$\frac{5}{2}$ R	$\frac{13}{2}$ R	$\frac{7}{2}$ R	$\frac{15}{2}$ R	$\frac{7}{5}$	$\frac{15}{13}$
	Non Linear	3	3	3	3R	6R	4R	7R	$\frac{4}{3}$	$\frac{7}{6}$

08. Laws of Thermodynamics

Zeroth law of thermodynamics: It is based on thermal equation, two systems in thermal equilibrium with a 3rd system are also in thermal equilibrium with each other.

First Law:

"Total energy of universe remain constant". It is law of conservation of energy. $\Delta U = q + W$,

09. Enthalpy

Enthalpy is a measure of the total energy of a thermodynamics system.

$$H = U + PV$$
$$dH + dU + d(PV)$$

Property of Enthalpy parameter

- (i) Enthalpy is a thermodynamic potential. It is a state function and an extensive quantity.
- (ii) The change ΔH is positive endothermic reaction, and negative in exothermic process.
- (iii) $\Delta H + \Delta U + P \Delta V$ combining with first law. $\Delta H = q_p = \text{Heat added at constant pressure}$