miscstudy.com

IIT-JEE•NEET •CBSE eBOOKS
 CLASS 11\&12th

Leaming Inquiry
8929803804

CLASS 11th

Motion in a Plane

Motion in a Plane

01. Motion in Two Dimension

Now we change our kinematics analysis from one dimension to two dimensions. In previous sections, we've discussed about the motion of an object along a straight line. Now we discuss, what happens when a particle moves in a plane. Have a look at figure, which shows a particle moving in X-Y plane, along a two dimensional path, known as trajectory of the particle. We discuss the motion of the particle between two points of the curve A and B. If the particle is moving along the curve and its velocity at an instant is v at an intermediate position of particle at point P. In two dimensional motion, direction of velocity of a particle is always tangential to its trajectory curve. As the particle moves from point $A\left(x_{1}, y_{1}\right)$ to point $B\left(x_{2}, y_{2}\right)$. Its projection on x-axis changes from x_{1} to x_{2}, and its projection of y-axis changes from y_{1} to y_{2}. The velocities of the projections of the particle along x and y direction can be found by resolving the velocity of the particle in x and y direction.

If along the curve particle moves a distance $d r$ in time $d t$, we define $v=d r / d t$. Similarly, when particle moves dr along the curve, its x-coordinate changes by $d x$ and y-coordinate changes by $d y$. Thus the velocity projections can be written as
and

$$
\begin{align*}
& v_{x}=\frac{d x}{d t}=v \cos \theta \tag{i}\\
& v_{y}=\frac{d y}{d t}=v \sin \theta \tag{ii}
\end{align*}
$$

In standard unit vector notification we can write the instantaneous velocity of particle as

$$
v=v_{x} \hat{i}+v_{y} \hat{j}
$$

Squaring and adding equations (i) and (ii), gives net velocity of the particle as

$$
\begin{equation*}
v=\sqrt{v_{x}^{2}+v_{y}^{2}} \tag{iii}
\end{equation*}
$$

Dividing above equations will give the angle formed by the trajectory with the positive x-direction or the slope angle of the trajectory as
or

$$
\begin{align*}
& \tan \theta=\frac{v_{y}}{v_{x}} \\
& \theta=\tan ^{-1} \frac{v_{y}}{v_{x}} \tag{iv}
\end{align*}
$$

