$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 11th

Solutions of Triangle

01. Properties and Solution of Triangle

For a $\triangle A B C$, sides opposite to angles A, B and C i.e., $B C, C A$ and $A B$ are represented by a, b and c respectively. We denote half of the perimeter of the triangle by s, i.e., $2 s=a+b+c$.

GEOMETRICAL PROPERTIES OF A, B, C and a, b, c.

1. $A+B+C=180^{\circ}$
2. $a+b>c, b+c>a, c+a>b$
3. $a>0, b>0, c>0$

For solving a Δ, we need some basic tools such as-

(1) SINE FORMULA

In any triangle $A B C$, the ratios of the sides to sine of the opposite angles are equal. i.e., $\frac{a}{\operatorname{Sin} A}=\frac{b}{\operatorname{Sin} B}=\frac{c}{\operatorname{Sin} C}=2 R$, where R is circumradius of $\triangle A B C$.

(2) COSINE FORMULA

Can we express and angle of any triangle in terms of the sides of the triangle?
The formula which does that is known as cosine rule.

$$
\operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \operatorname{Cos} B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}, \operatorname{Cos} C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

(3) PROJECTION FORMULA
$a=c \operatorname{Cos} B+b \operatorname{Cos} C$. Similarly, $b=a \operatorname{Cos} C+c \operatorname{Cos} A$ and $c=a \operatorname{Cos} B+b \operatorname{Cos} A$.

(4) NAPIER'S ANALOGY (TANGENT RULE)

Napier's Analogy states that
in any triangle $A B C, \operatorname{Tan} \frac{(A-B)}{2}=\frac{a-b}{a+b} \operatorname{Cot} \frac{C}{2}$.
Similarly,
$\operatorname{Tan} \frac{B-C}{2}=\frac{b-c}{b+c} \operatorname{Cot} \frac{A}{2} ; \operatorname{Tan} \frac{C-A}{2}=\frac{c-a}{c+a} \operatorname{Cot} \frac{B}{2}$
(5) TO FIND THE SINE, COSINE AND TANGENT OF THE HALF-ANGLES IN TERMS OF THE SIDES
$\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}, \cos \frac{A}{2}=\sqrt{\frac{s(s-a)}{b c}}, \tan \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$ where b and c are sides opposite to angle A.

