$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 11th

Straight Lines

Straight Lines

01. Straight Lines

A straight line is a curve such that every point on the line segment joining any two points on it lies on it.
Every first degree equation in x, y represent a straight line. so, $a x+b y+c=0$ is the general equation of a line.
It should be noted that there are only two unknowns in the equation of a straight line because equation of every straight line can be put in the form $a x+b y+1=0$ where a, b are two unknowns.

(i) Slope (Gradient) of a Line

The trigonometrical tangent of the angle that a line makes with the positive direction of the x-axis in anticlockwise sense is called the slope or gradient of the line.
The slope of a line is generally denoted by m.

Remark The angle of inclination of a line with the positive direction of x-axis in anticlockwise sense always lies between 0° and 180°.
If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are coordinates of any two points on a line, then its slope m is given by

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\text { Difference of ordinates }}{\text { Difference of abscissae }}
$$

(ii) Angle Between Two Lines

The angle θ between the lines having slopes m_{1} and m_{2} is given by

$$
\tan \theta= \pm \frac{m_{2}-m_{1}}{1+m_{1} m_{2}}
$$

If two lines of slopes m_{1} and m_{2} are parallel, then the angle θ between them is of 0°.

$$
\therefore \quad \tan \theta=\tan 0^{\circ}=0 \Rightarrow \frac{m_{2}-m_{1}}{1+m_{1} m_{2}}=0 \Rightarrow m_{2}=m_{1}
$$

Thus, when two lines are parallel, their slopes are equal.
Also, points A, B and C are collinear, iff
Slope of $A B=$ Slope of $B C=$ Slope of $A C$.
If two lines of slopes m_{1} and m_{2} are perpendicular, then the angle θ between them is of 90°
$\therefore \quad \cot \theta=0 \Rightarrow \frac{1+m_{1} m_{2}}{m_{2}-m_{1}}=0 \Rightarrow m_{1} m_{2}=-1$
(iii) Intercepts of a Line on The Axes

If a straight line cuts x-axis at A and the y-axis at B then $O A$ and $O B$ are known as the intercepts of the line on x-axis and y-axis respectively.
The intercepts are positive or negative according as the line meets with positive or negative directions of the coordinate axes.

Straight Lines

In Figure, we have $O A=x$-intercept, $O B=y$-intercept.

Figure

(iv) Line Parallel to \boldsymbol{x}-Axis

The equation of a line parallel to x-axis at a distance b from it is $y=b$.

Figure
Since x-axis is parallel to itself at a distance 0 from it. Therefore, the equation of x-axis is $y=0$.
If a line is parallel to x-axis at a distance b and below x-axis, then its equation is $y=-\mathrm{b}$.
(v) Line Parallel to \boldsymbol{y}-Axis

The equation of a line parallel to y-axis at a distance a from it is $x=a$.
Since y-axis is parallel to itself at a distance 0 from it, therefore the equation of y-axis is $x=0$.
If a line is parallel to y-axis at a distance a and to the left of y-axis, then its equation is $\mathrm{x}=-a$.

Figure

