misestudy.com smart learning

IIT-JEE · CBSE eBOOKS

CLASS 11&12th

CLASS 11th
Probability

01. Some Definitions

Elementary Event If a random experiment is performed, then each of its outcomes is known as an elementary event.

Sample Space The set of all possible outcomes of a random experiment is called the sample space associated with it and it is generally denoted by S.

In other words, the set of all elementary events associated to a random experiment is called its sample space.

Remark 1 Elementary events associated to a random experiment are also known as indecomposable events.

Occurrence Of An Event An event A associated to a random experiment is said to occur if any one of the elementary events associated to it is an outcome.

Thus, if an elementary event E is an outcome of a random experiment and A is an event such that $E \in A$, then we say that the event A has occurred.

Negation of An Event Corresponding to every event A associated with a random experiment we define an event "not A" which occurs when and only when A does not occur.

It follows from this that the event A occurs iff \overline{A} does not occur.

Favourable Elementary Events Let S be the sample space associated with a random experiment and A be an event associated to the experiment. Then elementary events belonging to A are known as favourable elementary events to the event A.

Probability

Definition If there are n elementary events associated with a random experiment and m of them are favourable to an event A, then the probability of happening or occurrence of A is denoted by P(A) and is defined as the ratio $\frac{m}{n}$

Thus,
$$P(A) = \frac{m}{n}$$

Clearly, $0 \le m \le n$

$$\therefore \qquad 0 \le \frac{m}{n} \le 1 \implies 0 \le P \ (A) \le 1$$

If P(A) = 1, then A is called certain event and A is called an impossible event, if P(A) = 0.

The number of elementary event which will ensure the non occurrence of A i.e. which ensure the occurrence of A is (n - m). Therefore,

$$P(\overline{A}) = \frac{n-m}{n}$$

$$\Rightarrow P(\overline{A}) = 1 - \frac{n-m}{n} \Rightarrow P(\overline{A}) = 1 - P(A) \Rightarrow P(A) + P(\overline{A}) = 1$$

The odds in favour of occurrence of the event A are defined by m:(n-m) i.e.; $P(A):P(\overline{A})$.