$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 12th

Matrices

Matrices

01. Meaning

Matrix

A set of $m n$ numbers (real or imaginary) arranged in the form of a rectangular array of m rows and n columns is called an $m \times n$ matrix (to be read as ' m by n^{\prime} matrix). An $m \times n$ matrix is usually written as

$$
A=\left[\begin{array}{ccccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 j} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & & \vdots & & \vdots \\
a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i j} & \ldots & a_{i n} \\
\vdots & \vdots & \vdots & & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m j} & \ldots & a_{m n}
\end{array}\right]
$$

In compact form the above matrix is represented by

$$
A=\left[a_{i j}\right]_{m \times n} \text { or, } A=\left[a_{i j}\right]
$$

The numbers a_{11}, a_{12}, \ldots etc. are known as the elements of the matrix A. The element $a_{i j}$ belongs to $i^{\text {th }}$ row and $j^{\text {th }}$ column and is called the $(i, j)^{\text {th }}$ element of the matrix $A=\left[a_{i j}\right]$. Thus, in the element $a_{i j}$ the first subscript i always denotes the number of rows and the second subscript j, number of columns in which the element occurs.
For example, $\quad A=\left[\begin{array}{rrr}2 & 1 & -1 \\ 1 & 3 & 2\end{array}\right]$ is a matrix having 2 rows and 3 columns and so it is a matrix of order 2×3 such that $a_{11}=2, a_{12}=1, a_{13}=-1, a_{21}=1, a_{22}=3, a_{23}=2$.

02. Types of Matrices

Row Matrix

A matrix having only one row is called a row-matrix or a row-vector.
For example, $A=\left[\begin{array}{ll}1 & 2-1-2\end{array}\right]$ is a row matrix of order 1×4.
Column Matrix
A matrix having only one column is called a column matrix or a column-vector.
For example, $A=\left[\begin{array}{r}1 \\ 2 \\ -1\end{array}\right]$ and $B=\left[\begin{array}{l}3 \\ 2 \\ 5 \\ 4\end{array}\right]$ are column-matrices or order 3×1 and 4×1 respectively.

Horizontal/Vertical Matrix

A matric is called a horizontal matrix if there are less number of rows then columns and a matrix is called vertical if there are more number of rows then columns.
i.e., $A=\left[a_{i j}\right]_{m \times n} \quad$ is a horizontal matrix if $m<n$.
and $A=\left[a_{i j}\right]_{m \times n} \quad$ is a vertical matrix if $m>n$.
(where m is number of rows and n is number of columns)
e.g., $A=\left[\begin{array}{lll}x_{1} & y_{1} & z_{1} \\ x_{2} & y_{2} & z_{2}\end{array}\right],\left[\begin{array}{ll}2 & 5 \\ 3 & 6 \\ 4 & 7\end{array}\right]$, are respectively horizontal and vertical matrices.

Matrices

Square Matrix

If in a matrix, number of rows $(m)=$ number of columns (n), then it is said to be a square matrix and the elements $a_{11}, a_{22}, \ldots \ldots \ldots, a_{m n}$ are called diagonal elements and the line passing through then is known as principal or leading diagonal. The other diagonal is known as off diagonal.

For example, $\left[\begin{array}{rrr}2 & 1 & -1 \\ 3 & -2 & 5 \\ 1 & 5 & -3\end{array}\right]$ is square matrix of order 3 in which the diagonal elements are $2,-2$ and -3 .

Diagonal Matrix

A square matrix $A=\left[a_{i j}\right]_{n \times n}$ is called a diagonal matrix if all the elements, except those in the leading diagonal, are zero i.e.

$$
a_{i j}=0 \text { for all } i \neq j
$$

A diagonal matrix of order $n \times n$ having $d_{1}, d_{2}, \ldots, d_{n}$ as diagonal elements is denoted by diag $\left[d_{1}, d_{2}, \ldots, d_{n}\right]$.
For example, the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ is a diagonal matrix, to be denoted by $A=\operatorname{diag}[1,2,3]$.

Scalar Matrix

A square matrix $A=\left[a_{i j}\right]_{n \times n}$ is called a scalar matrix if
(i) $a_{i j}=0$ for all $i \neq j$, and
(ii) $a_{i i}=C$ for all i, where $C \neq 0$.

In order words, a diagonal matrix in which all the diagonal elements are equal is called the scalar matrix.
For example, the matrices $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right], B=\left[\begin{array}{ccc}1-2 i & 0 & 0 \\ 0 & 1-2 i & 0 \\ 0 & 0 & 1-2 i\end{array}\right]$ are scalar matrices of order 2 and 3 respectively.

Identity Or Unit Matrix

A square matrix $A=\left[a_{i j}\right]_{n \times n}$ is called an identity or unit matrix if
(i) $a_{i j}=0$ for all $i \neq j$ and
(ii) $a_{i i}=1$ for all i

Matrices

In order words, a square matrix each of whose diagonal element is unity and each of whose non-diagonal elements is equal to zero is called an identity or unit matrix.
The identity matrix of order n is denoted by I_{n}.
For example, the matrices $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ are identity matrices of order 2 and 3 respectively.

Null Matrix

A matrix whose all elements are zero is called a null matrix or a zero matrix.
For example, $\quad\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ are null matrices of order 2×2 and 2×3 respectively.

Upper Triangular Matrix

A square matrix $A=\left[a_{i j}\right]$ is called an upper triangular matrix if $a_{i j}=0$ for all $i>j$.
Thus, in an upper triangular matrix, all elements below the main diagonal are zero.
For example, $\quad A=\left[\begin{array}{llll}1 & 2 & 4 & 3 \\ 0 & 5 & 1 & 3 \\ 0 & 0 & 2 & 9 \\ 0 & 0 & 0 & 5\end{array}\right]$ is an upper triangular matrix.

Lower Triangular Matrix

A square matrix $A=\left[a_{i j}\right]$ is called a lower triangular matrix if $a_{i j}=0$ for all $i<j$.
Thus, in a lower triangular matrix, all elements above the main diagonal are zero.
For example, $\quad A=\left[\begin{array}{lll}2 & 0 & 0 \\ 3 & 2 & 0 \\ 4 & 5 & 3\end{array}\right]$ is a lower triangular matrix of order 3. A triangular matrix
$A=\left[a_{i j}\right] n \times n$ is called a strictly triangular iff. $a_{i i}=0$ for all $i=1,2, \ldots, \mathrm{n}$.

03. Algebra of Matrices

Equality Of Matrices

The matrices $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{r \times s}$ are equal if
(i) $m=r$, i.e., the number of rows in A equals the number of rows in B
(ii) $n=s$, i.e., the number of columns in A equals the number of columns in B
(iii) $a_{i j}=b_{i j}$ for $i=1,2, \ldots, m$ and $j=1,2, \ldots, n$

Addition Of Matrices

Let A, B be two matrices, each of order $m \times n$. Then their sum $A+B$ is a matrix of order $m \times n$ and is obtained by adding the corresponding elements of A and B.
Thus, if $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$ are two matrices of the same order, their sum $A+B$ is defined to be the matrix of order $m \times n$ such that

$$
(A+B)_{i j}=a_{i j}+b_{i j} \text { for } i=1,2, \ldots, m \text { and } j=1,2, \ldots, n
$$

