misestudy.com
 smart learning

CLASS 12th

Application of Derivatives

Application of Derivatives

01. Derivative as a Rate Measurer

$\frac{d y}{d x}$ represents the role of change of y w.r.t. x for a definite value of x.

REMARK

(1) The value of $\frac{d y}{d x}$ at $x=x_{0}$ i.e. $\left(\frac{d y}{d x}\right)_{x=x_{0}}$ represent the rate of change of y with respect to x at $x=x_{0}$.
(2) If $x=\phi(t)$ and $y=\Psi(t)$, then $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$, provided that $\frac{d x}{d t} \neq 0$.

02. Mean Value Theorems

ROLLE'S THEOREM

Let f be a real valued function defined on the closed interval $[a, b]$ such that
(i) it is continuous on the closed interval $[a, b]$,
(ii) it is differentiable on the open interval (a, b),
and, (iii) $f(a)=f(b)$.
Then, there exists a real number $c \in(a, b)$ such that $f^{\prime}(c)=0$.

GEOMETRICAL INTERPRETATION OF ROLLE'S THEOREM

$\exists c \in(a, b) ;$ tangent to the curve $y=f(x)$ at $(c, f(c))$ is parallel to

curve $y=f(x)$ at
(s f(r)) (c f(r)) (b f(r)) is

ALGEBRAIC INTERPRETATION OF ROLLE'S THEOREM

Between any two roots of a polynomial $f(x)$, there is always a root of its derivative $f^{\prime}(x)$.

03. Lagrange's Mean Value Theorem

Let $f(x)$ be a function defined on $[a, b]$ such that
(i) it is continuous on $[a, b]$,
(ii) it is differentiable on (a, b).

Then, there exists a real number $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

GEOMETRICAL INTERPRETATION

There exists a point $\left(c_{1} f(c)\right)$ on the curve such that the tangent there at is parallel to the chord joining the end points of the curve.

04. Slopes of the Tangent and the Normal

 $\left(\frac{d y}{d x}\right)_{P}=\tan \Psi=$ Slope of the tangent at P, where Ψ is the angle which the tangent at $P\left(x_{1}, y_{1}\right)$ makes with the positive direction of x-axis.

