MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 05. Complex Numbers & Quadratic Equations

01. Why We Need Complex Numbers?

The equations of the form $x^2 + 1 = 0$, $x^2 + 4 = 0$ etc. are not solvable in R i.e. there is no real number whose square is a negative real number. Euler was the first mathematician to introduce the symbol i (iota) for the square root of -1 i.e. a solution of $x^2 + 1 = 0$ with the property $i^2 = -1$. He also called this symbol as the imaginary unit.

02. Integral Powers of Iota (i)

Positive integral power of i: We have,

$$i = \sqrt{-1}$$

$$i^{2} = -1$$

$$i^{3} = i^{2} \times i = -i$$

$$i^{4} = (i^{2})^{2} = (-1)^{2} = 1$$

In order to compute i^n for n > 4, we divide n by 4 and obtain the remainder r. Let m be the quotient when n is divided by 4. Then,

 $n = 4m + r, \text{ where } 0 \le r < 4$ $\Rightarrow \qquad i^n = i^{4m+r} = (i^4)^4 \ i^r = i^r$

Thus, the value of i^n for n > 4 is i^r , where r is the remainder when n is divided by 4.

Negative integral powers of i:

By the law of indices, we have,

$$i^{-1} = \frac{1}{i} = \frac{i^3}{i^4} = i^3 = -i$$
$$i^{-2} = \frac{1}{i^2} = \frac{1}{-1} = -1$$
$$i^{-3} = \frac{1}{i^3} = \frac{i}{i^4} = i$$
$$i^{-4} = \frac{1}{i^4} = \frac{1}{1} = 1$$

If n > 4, them

 $i^{-n} = \frac{1}{i^n} = \frac{1}{i^{r'}}$ where r is the remainder when n is divided by 4.

MISOSTUDY.COM The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804 **NOTE** i^0 is defined as 1.

Example Evaluate the following i^{135} **Solution** 135 leaves remainder as 3 when it is divided by 4. $\therefore i^{135} = i^3 = -i$

03. Complex Numbers

COMPLEX NUMBER

If a, b are two real numbers, then a number of the form a + ib is called a complex number. For example, 7+2i, -1+i, 3-2i, 0+2i, 1+0i etc. are complex numbers.

<u>Real and imaginary parts of a complex number</u>: If z = a + ib is a complex number, then 'a' is called the real part of z and 'b' is known as the imaginary part of z. The real part of z is denoted by Re (z) and the imaginary part by Im (z). <u>Example</u> z = 3 - 4i, then Re (z) = 3 and Im (z) = -4.

<u>Purely real and purely imaginary complex numbers</u>: A complex number z is purely real if its imaginary part is zero i.e. Im (z)=0 and purely imaginary if its real part is zero i.e. Re (z)=0.

<u>Set of complex numbers</u>: The set of all complex numbers is denoted by C i.e. $C = \{a+ib : a, b \in R\}.$

NOTE Since a real number 'a' can be written as a+0i. Therefore, every real number is a complex number. Hence, $R \subset C_i$, where R is the set of all real numbers.

04. Equality of Complex Numbers

Definition Two complex numbers $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ and equal if $a_1 = a_2$ and $b_1 = b_2$ i.e. $Re(z_1) = Re(z_2)$ and $Im(z_1) = Im(z_2)$. Thus, $z_1 = z_2 \Leftrightarrow Re(z_1) = Re(z_2)$ and Im $(z_1) = Im(z_2)$. **Example** If 4x + i(3x - y) = 3 + i(-6), where x and y are real numbers, then find the values of x and y. **Solution** We have 4x + i(3x - y) = 3 + i(-6)Equating the real and the imaginary parts of (1), we get 4x = 3, 3x - y = -6, Which, on solving simultaneously, give $x = \frac{3}{4}$ and $y = \frac{33}{4}$

MISOSTUDY.COM

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

05. Algebra of Complex Numbers

ADDITION

Definition Let $z_1 = a_1 + i b_1$ and $z_2 = a_2 + i b_2$ be two complex numbers. Then their sum $z_1 + z_2$ is defined as the complex number $(a_1 + a_2) + i(b_1 + b_2)$. The sum $z_1 + z_2$ is a complex number such that Re $(z_1 + z_2) = \text{Re}(z_1) + \text{Re}(z_2)$ and Im $(z_1 + z_2) = \text{Im}(z_1) + \text{Im}(z_2)$

PROPERTIES OF ADDITION OF COMPLEX NUMBERS

- (i) <u>The Closure Law</u>: The sum of two complex numbers is a complex number, i.e., $z_1 + z_2$ is a complex number for all complex numbers z_1 and z_2 .
- (ii) Addition is Commutative: For any two complex numbers z_1 and z_2 , we have

$$z_1 + z_2 = z_2 + z_1.$$

(iii) Addition is Associative: For any three complex numbers z_1 , z_2 , z_3 , we have

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3) +$$

- (iv) Existence of Additive Identity: The complex number 0 = 0 + i0 is the identity element for addition i.e. z+0=z=0+z for all $z \in C$. The complex number 0 = 0 + i0 is the identity element for addition.
- (v) Existence of Additive Inverse: For any complex number z = a + ib, there exists

-z = (-a)+i(-b) such that z + (-z)=0 = (-z)+z. The

complex number -z is called the additive inverse of z.

Example (2 + i3) + (-6 + i5) = (2 - 6) + i(3 + 5) = -4 + i8.

06. Subtraction of Complex Numbers

Definition Let $z_1 = a_1 + i b_1$ and $z_2 = a_2 + i b_2$ be two complex numbers. Then the subtraction of z_2 from z_1 is denoted by $z_1 - z_2$ and is defined as the addition of z_1 and $-z_2$. Thus, $z_1 - z_2 = z_1 + (-z_2) = (a_1 + ib_1) + (-a_2 - i b_2) = (a_1 - a_2) + i (b_1 - b_2)$

Example (6 + 3i) - (2 - i) = (6 + 3i) + (-2 + i) = 4 + 4iand (2 - i) - (6 + 3i) = (2 - i) + (-6 - 3i) = -4 - 4i.

07. Multiplication of Complex Numbers

Let $z_1 = a_1 + ib_1$ and $z_2 = a_2 + ib_2$ be two complex numbers. Then the subtraction of z_1 with z_2 is denoted by $z_1 z_2$ and is defined as the complex number $(a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1)$. Thus, $z_1 z_2 = (a_1 + ib_1)(a_2 + ib_2)$ $\Rightarrow \qquad z_1 z_2 = (a_1 a_2 - b_1 b_2) + i(a_1 b_2 + a_2 b_1)$ $\Rightarrow \qquad z_1 z_2 = [\operatorname{Re}(z_1) \operatorname{Re}(z_2) - \operatorname{Im}(z_1) \operatorname{Im}(z_2)] + i[\operatorname{Re}(z_1) \operatorname{Im}(z_2) + \operatorname{Re}(z_2) \operatorname{Im}(z_1)]$

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804