MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 05. Complex Numbers \& Quadratic Equations

01. Why We Need Complex Numbers?

The equations of the form $x^{2}+1=0, x^{2}+4=0$ etc. are not solvable in R i.e. there is no real number whose square is a negative real number. Euler was the first mathematician to introduce the symbol i (iota) for the square root of -1 i.e. a solution of $x^{2}+1=0$ with the property $i^{2}=-1$. He also called this symbol as the imaginary unit.

02. Integral Powers of Iota (i)

Positive integral power of i: We have,

$$
\begin{array}{ll}
& i=\sqrt{-1} \\
\therefore \quad & i^{2}=-1 \\
& i^{3}=i^{2} \times i=-i \\
& i^{4}=\left(i^{2}\right)^{2}=(-1)^{2}=1
\end{array}
$$

In order to compute i^{n} for $n>4$, we divide n by 4 and obtain the remainder r. Let m be the quotient when n is divided by 4 . Then,

$$
n=4 m+r, \text { where } 0 \leq r<4
$$

$\Rightarrow \quad i^{n}=i^{4 m+r}=\left(i^{4}\right)^{4} i^{r}=i^{r}$
Thus, the value of i^{n} for $n>4$ is i^{r}, where r is the remainder when n is divided by 4 .

Negative integral powers of i:
By the law of indices, we have,

$$
\begin{aligned}
& i^{-1}=\frac{1}{i}=\frac{i^{3}}{i^{4}}=i^{3}=-i \\
& i^{-2}=\frac{1}{i^{2}}=\frac{1}{-1}=-1 \\
& i^{-3}=\frac{1}{i^{3}}=\frac{i}{i^{4}}=i \\
& i^{-4}=\frac{1}{i^{4}}=\frac{1}{1}=1
\end{aligned}
$$

If $n>4$, them
$i^{-n}=\frac{1}{i^{n}}=\frac{1}{i^{r^{\prime}}}$ where r is the remainder when n is divided by 4.

NOTE i^{0} is defined as 1 .

Example Evaluate the following i^{135}
Solution 135 leaves remainder as 3 when it is divided by 4 .

$$
\therefore \quad i^{135}=i^{3}=-i
$$

03. Complex Numbers

COMPLEX NUMBER

If a, b are two real numbers, then a number of the form $a+i b$ is called a complex number. For example, $\quad 7+2 i,-1+i, 3-2 i, 0+2 i, 1+0 i$ etc. are complex numbers.

Real and imaginary parts of a complex number: If $z=a+i b$ is a complex number, then ' a ' is called the real part of z and ' b ' is known as the imaginary part of z. The real part of z is denoted by $\operatorname{Re}(z)$ and the imaginary part by $\operatorname{Im}(z)$.
Example $z=3-4 i$, then $\operatorname{Re}(z)=3$ and $\operatorname{Im}(z)=-4$.

Purely real and purely imaginary complex numbers: A complex number z is purely real if its imaginary part is zero i.e. $\operatorname{Im}(z)=0$ and purely imaginary if its real part is zero i.e. Re $(z)=0$.

Set of complex numbers: The set of all complex numbers is denoted by C i.e. $C=\{a+i b: a, b \in R\}$.

NOTE Since a real number ' a ' can be written as $a+0 i$. Therefore, every real number is a complex number. Hence, $R \subset C$, where R is the set of all real numbers.

04. Equality of Complex Numbers

Definition Two complex numbers $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$ and equal if $a_{1}=a_{2}$ and $b_{1}=b_{2}$ i.e. $\operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$.
Thus, $\quad z_{1}=z_{2} \Leftrightarrow \operatorname{Re}\left(z_{1}\right)=\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}\right)=\operatorname{Im}\left(z_{2}\right)$.
Example If $4 x+i(3 x-y)=3+i(-6)$, where x and y are real numbers, then find the values of x and y.
Solution We have

$$
4 x+i(3 x-y)=3+i(-6)
$$

Equating the real and the imaginary parts of (1), we get

$$
4 x=3,3 x-y=-6,
$$

Which, on solving simultaneously, give $x=\frac{3}{4}$ and $y=\frac{33}{4}$

05. Algebra of Complex Numbers

ADDITION

Definition Let $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$ be two complex numbers. Then their sum $z_{1}+z_{2}$ is defined as the complex number $\left(a_{1}+a_{2}\right)+i\left(b_{1}+b_{2}\right)$. The sum $z_{1}+z_{2}$ is a complex number such that $\operatorname{Re}\left(z_{1}+z_{2}\right)=\operatorname{Re}\left(z_{1}\right)+\operatorname{Re}\left(z_{2}\right)$ and $\operatorname{Im}\left(z_{1}+z_{2}\right)=\operatorname{Im}\left(z_{1}\right)+\operatorname{Im}\left(z_{2}\right)$

PROPERTIES OF ADDITION OF COMPLEX NUMBERS
(i) The Closure Law : The sum of two complex numbers is a complex number, i.e., $z_{1}+$ z_{2} is a complex number for all complex numbers z_{1} and z_{2}.
(ii) Addition is Commutative: For any two complex numbers z_{1} and z_{2}, we have

$$
z_{1}+z_{2}=z_{2}+z_{1} .
$$

(iii) Addition is Associative: For any three complex numbers z_{1}, z_{2}, z_{3}, we have

$$
\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right)+
$$

(iv) Existence of Additive Identity: The complex number $0=0+i 0$ is the identity element for addition i.e. $z+0=z=0+z$ for all $z \in C$. The complex number $0=0+i 0$ is the identity element for addition.
(v) Existence of Additive Inverse: For any complex number $z=a+i b$, there exists $-z=(-a)+i(-b)$ such that $z+(-z)=0=(-z)+z$. The complex number $-z$ is called the additive inverse of z.

Example $(2+i 3)+(-6+i 5)=(2-6)+i(3+5)=-4+i 8$.

06. Subtraction of Complex Numbers

Definition Let $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$ be two complex numbers. Then the subtraction of z_{2} from z_{1} is denoted by $z_{1}-z_{2}$ and is defined as the addition of z_{1} and $-z_{2}$.
Thus,

$$
z_{1}-z_{2}=z_{1}+\left(-z_{2}\right)=\left(a_{1}+i b_{1}\right)+\left(-a_{2}-i b_{2}\right)=\left(a_{1}-a_{2}\right)+i\left(b_{1}-b_{2}\right)
$$

Example $(6+3 i)-(2-i)=(6+3 i)+(-2+i)=4+4 i$

$$
\text { and }(2-i)-(6+3 i)=(2-i)+(-6-3 i)=-4-4 i \text {. }
$$

07. Multiplication of Complex Numbers

Let $z_{1}=a_{1}+i b_{1}$ and $z_{2}=a_{2}+i b_{2}$ be two complex numbers. Then the subtraction of z_{1} with z_{2} is denoted by $z_{1} z_{2}$ and is defined as the complex number $\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right)$.
Thus, $\quad z_{1} z_{2}=\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right)$
$\Rightarrow \quad z_{1} z_{2}=\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+a_{2} b_{1}\right)$
$\Rightarrow \quad z_{1} z_{2}=\left[\operatorname{Re}\left(z_{1}\right) \operatorname{Re}\left(z_{2}\right)-\operatorname{Im}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)\right]+i\left[\operatorname{Re}\left(z_{1}\right) \operatorname{Im}\left(z_{2}\right)+\operatorname{Re}\left(z_{2}\right) \operatorname{Im}\left(z_{1}\right)\right]$

