MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 10. Straight Lines

01. Straight Lines

Every first degree equation in x, y represent a straight line. so, $a x+b y+c=0$ is the general equation of a line.

(i) Slope (Gradient) of a Line

A line in a coordinate plane forms two angles with the x -axis, which are
supplementary. The angle (say) θ made by the line l with positive direction of x-axis and measure anti clockwise is called the inclination of the line. Obeviously $0^{\circ} \leq \theta \theta$ 180°. (Figure)

Figure

NOTE 1 Lines parallel to x-axis, or coinciding with x-axis, have inclination of 0°.
NOTE 2 Inclination of a vertical line (parallel to or coinciding with y-axis) is 90°.

The trigonometrical tangent of the inclination of line l is called the slope or gradient of the line l.
The slope of a line is generally denoted by m.

NOTE 1 The slope of a line whose inclination is 90° is not defined.

NOTE 2 The slope of a line whose inclination is 0° is $\tan 0^{\circ}=0$.

NOTE 3 The slope of x-axis is zero and slope of y-axis is not defined.
(ii) Slope of a line when coordinates of any two points on the line are given

Let $P\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ be two points on non-vertical line l whose inclination is θ. Obviously, $x_{1} \neq x_{2}$, otherwise the line will become perpendicular to x-axis and its slope will not be defined. The inclination of the line l may be acute or obtuse. Let us take these tow cases.

Draw perpendicular QR to x-axis and PM perpendicular to RQ as shown in Figure (i) (ii).

Figure (i)

Figure (ii)

Case I When angle θ is acute :
in Figure (i), $\angle \mathrm{MPQ}=\theta$.
Therefore, slope of line $l=m=\tan \theta$.
But in $\triangle \mathrm{MPQ}$, we have $\tan \theta=\frac{M Q}{M P}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
From equations (i) and (ii), we have $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
Case II When angle θ is obtuse :
In Figure (ii), we have
$\angle \mathrm{MPQ}=180^{\circ}-\theta$.
Therefore, $\theta=180^{\circ}-\angle \mathrm{MPQ}$.
NOw, slope of the line l

$$
\begin{aligned}
m & =\tan \theta \\
& =\tan \left(180^{\circ}-\angle \mathrm{MPQ}\right)=-\tan \angle \mathrm{MPQ} \\
& =-\frac{M Q}{M P}=-\frac{y_{2}-y_{1}}{x_{1}-x_{2}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} .
\end{aligned}
$$

Consequently, we see that in both the cases the slope m of the line through the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$.
(iii) Conditions for parallelism and perpendicularity of lines in terms of their slopes

In a coordinate plane, suppose that non-vertical lines l_{1} and l_{2} have slopes m_{1} and m_{2}, respectively. Let their inclinations be α and β, respectively.
If the line l_{1} is parallel to l_{2} (Figure), then their inclinations are equal, i.e.,

$$
\alpha=\beta, \text { and hence, } \tan \alpha=\tan \beta
$$

Therefore m_{1} and m_{2}, i.e., their slopes are equal.
Conversely, if the slope of two lines l_{1} and l_{2} is same, i.e.,

$$
m_{1}=m_{2} .
$$

Then $\tan \alpha=\tan \beta$.

Figure

By the property of tangent function (between 0° and 180°), $\alpha=\beta$.
Therefore, the lines are parallel.
Hence, two non vertical lines l_{1} and l_{2} are parallel if and only if their slopes are equal.

If the lines, $\boldsymbol{l}_{\mathbf{1}}$ and $\boldsymbol{l}_{\mathbf{2}}$ are perpendicular (Figure), then $\beta=\alpha+90^{\circ}$.

Figure
Therefore, $\tan \quad \beta=\tan \left(\alpha+90^{\circ}\right)$

$$
=-\cot \alpha=-\frac{1}{\tan \alpha}
$$

i.e.,

$$
m_{2}=-\frac{1}{m_{1}} \text { or } m_{1} m_{2}=-1
$$

Conversely, if $m_{1} m_{2}=-1$, i.e., $\tan \alpha \tan \beta=-1$.
Then $\tan \alpha=-\cot \beta=\tan \left(\beta+90^{\circ}\right)$ or $\tan \left(\beta-90^{\circ}\right)$
Therefore, α and β differ by 90°.
Thus, lines l_{1} and l_{2} are perpendicular to each other.
Hence, two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other,
i.e.,

$$
m_{2}=-\frac{1}{m_{1}} \text { or } m_{1} m_{2}=-1
$$

