CLASS NOTES FOR CBSE

Chapter 10. Straight Lines

01. Straight Lines

Every first degree equation in x, y represent a straight line. so, ax + by + c = 0 is the general equation of a line.

(i) Slope (Gradient) of a Line

A line in a coordinate plane forms two angles with the x-axis, which are supplementary. The angle (say) θ made by the line *l* with positive direction of *x*-axis and measure anti clockwise is called the *inclination of the line*. Obeviously $0^{\circ} \le \theta \ \theta$ 180°. (Figure)

NOTE 1^{IP} Lines parallel to x-axis, or coinciding with x-axis, have inclination of 0° .

NOTE 2^{IP} Inclination of a vertical line (parallel to or coinciding with y-axis) is 90°.

The trigonometrical tangent of the inclination of line l is called the slope or gradient of the line l.

The slope of a line is generally denoted by m.

NOTE 1^{log} The slope of a line whose inclination is 90° is not defined.

NOTE 2^{LSP} The slope of a line whose inclination is 0° is tan $0^{\circ} = 0$.

NOTE 3^{log} The slope of x-axis is zero and slope of y-axis is not defined.

MISOSTUDY.COM

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

(ii) Slope of a line when coordinates of any two points on the line are given Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be two points on non-vertical line l whose inclination is θ . Obviously, $x_1 \neq x_2$, otherwise the line will become perpendicular to x-axis and its slope will not be defined. The inclination of the line l may be acute or obtuse. Let us take these tow cases.

Draw perpendicular QR to x-axis and PM perpendicular to RQ as shown in Figure (i) (ii).

points (x_1, y_1) and (x_2, y_2) is given by $m = \frac{y_2 - y_1}{x_2 - x_1}$.

(iii) Conditions for parallelism and perpendicularity of lines in terms of their slopes In a coordinate plane, suppose that non-vertical lines l_1 and l_2 have slopes m_1 and m_2 , respectively. Let their inclinations be α and β , respectively.

If the line l_1 is parallel to l_2 (Figure), then their inclinations are equal, i.e.,

 $\alpha = \beta$, and hence, tan $\alpha = \tan \beta$

Therefore m_1 and m_2 , i.e., their slopes are equal.

Conversely, if the slope of two lines l_1 and l_2 is same, i.e.,

MISOSTUDY.COM

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

By the property of tangent function (between 0° and 180°), $\alpha = \beta$. Therefore, the lines are parallel.

Hence, two non vertical lines l_1 and l_2 are parallel if and only if their slopes are equal.

If the lines, l_1 and l_2 are perpendicular (Figure), then $\beta = \alpha + 90^\circ$.

Therefore, $\tan \beta = \tan (\alpha + 90^{\circ})$

$$= -\cot \alpha = -\frac{1}{\tan \alpha}$$
$$m_2 = -\frac{1}{m_1} \text{ or } m_1 m_2 = -1$$

i.e.,

Conversely, if $m_1 m_2 = -1$, i.e., $\tan \alpha \tan \beta = -1$. Then $\tan \alpha = -\cot \beta = \tan (\beta + 90^\circ)$ or $\tan (\beta - 90^\circ)$ Therefore, α and β differ by 90°.

Thus, lines l_1 and l_2 are perpendicular to each other.

Hence, two non-vertical lines are perpendicular to each other if and only if their slopes are negative reciprocals of each other,

i.e.,
$$m_2 = -\frac{1}{m_1}$$
 or $m_1 m_2 = -1$

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804