

Complete MATH

IIT-JEE · CBSE eBOOKS CLASS 11&12th

CLASS 12th

Inverse Trigonometric Functions

Inverse Trigonometric Functions

01. Inverse of a Function

We know that corresponding to every bijection (one-one onto function) $f: A \rightarrow B$ there exists a bijection $g: B \rightarrow A$ defined by

g(y) = x if and only f(x) = y

The function $g: B \rightarrow A$ is called the inverse of function $g: A \rightarrow B$ and is denoted by f^{-1} Thus, we have

$$f(x) = y \Leftrightarrow f^{-1}(y) = x.$$

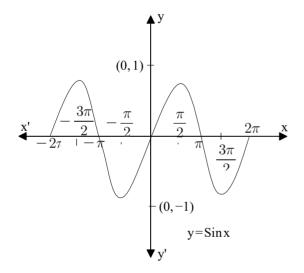
We have also learnt that

and

$$(f^{-1} of)(x) = f^{-1}(f(x)) = f^{-1}(y) = x$$
, for all $x \in A$
 $(of f^{-1})(y) = f(f^{-1}(y)) = f(x) = y$, for all $x \in B$.

02. Inverse of Sine Function

Consider the function $f: R \to R$ given by $f(x) = \operatorname{Sin} x$. It is a many-one into function as it attains same value at infinitely many points and its range [-1, 1] is not same as its co-domain. We known that any function can be made an onto function, if we replace its co-domain by its range. Therefore, $f: R \to [-1, 1]$ is a many-one onto functions.



Journey to obtain inverse of Sine function-

In order to make f a one-one function, we will have to restrict its domain in such a way that in that domain there is no turn in the graph of the function and the function takes every value between -1 and 1. It is evident from the graph of $f(x) = \operatorname{Sin} x$ that if we take the domain as $[-\pi/2, \pi/2]$, then f(x) becomes one-one. Thus, $f: [-\pi/2, \pi/2] \rightarrow [-1, 1]$ given

$$f(\theta) = \operatorname{Sin} \theta$$

is a bijection and hence invertible.

3

Inverse Trigonometric Functions

The inverse of the sine function is denoted by \sin^{-1} . Thus, \sin^{-1} is a function with domain [-1,1] and range $[-\pi/2, \pi/2]$ such that

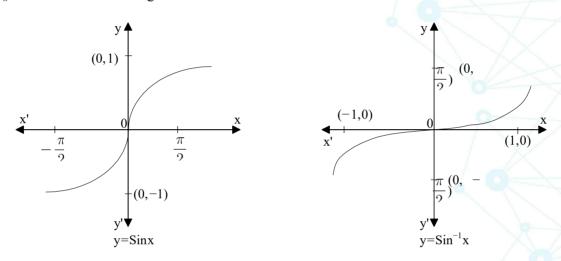
 $\operatorname{Sin}^{-1} x = \theta \Leftrightarrow \operatorname{Sin} \theta = x.$

Also,

$$\operatorname{Sin}^{-1}(\operatorname{Sin}\theta) = \theta$$
 for all $\theta \in [-\pi/2, \pi/2]$

$$\begin{bmatrix} \because f^{-1}of(x) = f^{-1}(f(x)) = x \\ \text{and } fof^{-1}(y) = f(f^{-1}(y)) = y \end{bmatrix}$$

and, $\operatorname{Sin}(\operatorname{Sin}^{-1}x) = x$ for all $x \in [-1,1]$ The graph of the function $f: [-\pi/2, \pi/2] \to [-1,1]$ given by $f(x) = \operatorname{Sin} x$ is shown in Figure. In order to obtain the graph of $\operatorname{Sin}^{-1}: [-1,1] \to [-\pi/2, \pi/2]$ we interchange x and y axes as shown in Figure.



03. Principal Value Branches of Inverse Trigonometric Functions

(i) $y = \operatorname{Sin}^{-1} x \Longrightarrow x = \operatorname{Sin} y$

In $x = \sin y$, for one value of x, y can take infinite values.

But if $y = \operatorname{Sin}^{-1} x$ is a function, then y should possess only one value of y for every value of x. This means we should restrict the values which y can possess. The restricted set of values which y can possess is its <u>Principal Value Branch</u>.

Here
$$-1 \le \operatorname{Sin} y \le 1 \implies \frac{-\pi}{2} \le y \le \frac{\pi}{2}$$

 \Rightarrow Domain: $x \in [-1, 1]$
Range: $y \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
Principal Value Branch of $\operatorname{Sin}^{-1} x \equiv \frac{-\pi}{2} \le y \le \frac{\pi}{2}$

e-Learning for IIT-JEE | NEET | CBSE | 9/10th