$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

01. Inverse of a Function

We know that corresponding to every bijection (one-one onto function) $f: A \rightarrow B$ there exists a bijection $g: B \rightarrow A$ defined by

$$
g(y)=x \text { if and only } f(x)=y
$$

The function $g: B \rightarrow A$ is called the inverse of function $g: A \rightarrow B$ and is denoted by f^{-1}. Thus, we have

$$
f(x)=y \Leftrightarrow f^{-1}(y)=x .
$$

We have also learnt that

$$
\left(f^{-1} \circ f\right)(x)=f^{-1}(f(x))=f^{-1}(y)=x, \text { for all } x \in A
$$

and

$$
\left(o f f^{-1}\right)(y)=f\left(f^{-1}(y)\right)=f(x)=y, \text { for all } x \in B
$$

02. Inverse of Sine Function

Consider the function $f: R \rightarrow R$ given by $f(x)=\operatorname{Sin} x$. It is a many-one into function as it attains same value at infinitely many points and its range $[-1,1]$ is not same as its co-domain. We known that any function can be made an onto function, if we replace its co-domain by its range. Therefore, $f: R \rightarrow[-1,1]$ is a many-one onto functions.

Journey to obtain inverse of Sine function-

In order to make f a one-one function, we will have to restrict its domain in such a way that in that domain there is no turn in the graph of the function and the function takes every value between -1 and 1 . It is evident from the graph of $f(x)=\operatorname{Sin} x$ that if we take the domain as $[-\pi / 2, \pi / 2]$, then $f(x)$ becomes one-one. Thus,

$$
f:[-\pi / 2, \pi / 2] \rightarrow[-1,1] \text { given }
$$

$$
f(\theta)=\operatorname{Sin} \theta
$$

is a bijection and hence invertible.

The inverse of the sine function is denoted by Sin^{-1}. Thus, Sin^{-1} is a function with domain $[-1,1]$ and range $[-\pi / 2, \pi / 2]$ such that

$$
\operatorname{Sin}^{-1} x=\theta \Leftrightarrow \operatorname{Sin} \theta=x .
$$

Also,

$$
\operatorname{Sin}^{-1}(\operatorname{Sin} \theta)=\theta \text { for all } \theta \in[-\pi / 2, \pi / 2] \quad\left[\begin{array}{c}
\because f^{-1} o f(x)=f^{-1}(f(x))=x \\
\text { and } f o f^{-1}(y)=f\left(f^{-1}(y)\right)=y
\end{array}\right]
$$

and, $\quad \operatorname{Sin}\left(\operatorname{Sin}^{-1} x\right)=x$ for all $x \in[-1,1]$
The graph of the function $f:[-\pi / 2, \pi / 2] \rightarrow[-1,1]$ given by $f(x)=\operatorname{Sin} x$ is shown in Figure. In order to obtain the graph of $\operatorname{Sin}^{-1}:[-1,1] \rightarrow[-\pi / 2, \pi / 2]$ we interchange x and y axes as shown in Figure.

03. Principal Value Branches of Inverse Trigonometric Functions

(i) $y=\operatorname{Sin}^{-1} x \Rightarrow x=\operatorname{Sin} y$

In $x=\operatorname{Sin} y$, for one value of x, y can take infinite values.
But if $y=\operatorname{Sin}^{-1} x$ is a function, then y should possess only one value of y for every value of x. This means we should restrict the values which y can possess. The restricted set of values which y can possess is its Principal Value Branch.

Here $-1 \leq \operatorname{Sin} y \leq 1 \Rightarrow \frac{-\pi}{2} \leq y \leq \frac{\pi}{2}$
\Rightarrow Domain: $x \in[-1,1]$
Range: $y \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
Principal Value Branch of $\operatorname{Sin}^{-1} x \equiv \frac{-\pi}{2} \leq y \leq \frac{\pi}{2}$

