

Complete MATH

IIT-JEE · CBSE eBOOKS CLASS 11&12th

CLASS 12th 3-D Geometry

3-D Geometry

01. Straight Line In Space

Vector And Cartesian Equation Of A Line

Theorem I The vector equation of a straight line passing through a fixed point with position vector \vec{a} and parallel to a given vector \vec{b} is $\vec{r} = \vec{a} + \lambda \vec{b}$, where λ is scalar.

Remark 1 In the above equation \vec{r} is the position vector of any point P(x, y, z) on the line. Therefore, $\vec{r} = x \hat{i} + y \hat{j} + z \hat{k}$.

Remark 2 The position vector of any point on the line is taken as $\vec{a} + \lambda \vec{b}$.

Theorem II The cartesian equation of a straight line passing through a fixed point (x₁, y₁, z₁) and having direction ratios proportional to a, b, c is given by $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$

Remark 1 The parametric equations of the line $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$ are $x = x_1 + a\lambda$, $y = y_1 + b\lambda$, $z = z_1 + c\lambda$, where λ is the parameter.

- **Remark 2** The coordinates of any point on the line $\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$ are $(x_1 + a\lambda, y_1 + b\lambda, z_1 + c\lambda) \lambda \in R$.
- **Remark 3** Since the direction cosines of a line are also direction ratios. Therefore, equation of a line passing through (x_1, y_1, z_1) and having direction cosines l, m, n is $\frac{x x_1}{l} = \frac{y y_1}{m} = \frac{z z_1}{n}$

3

3-D Geometry

Since x, y and z-axes pass through the origin and have direction cosines Remark 4 1, 0, 0; 0, 1, 0 and 0, 0, 1 respectively. Therefore, their equations are x-axis : $\frac{x-0}{1} = \frac{y-0}{0} = \frac{z-0}{0}$ or, y = 0 and z = 0x-0 y-0 z-0

y-axis:
$$\frac{1}{0} = \frac{y}{1} = \frac{1}{0}$$
 or, $x = 0$ and $z = 0$
z-axis: $\frac{x-0}{0} = \frac{y-0}{0} = \frac{z-0}{1}$ or, $x = 0$ and $y = 0$

Theorem III The vector equation of a line passing through two points with position vector a and \vec{b} is

Theorem IV The cartesian equations of a line passing through two given points (x_1, y_1, z_1) and (x_2, y_2, z_2) are given by

 $\frac{x - x_1}{x_2 - x_1} = \frac{y - y_1}{y_2 - y_1} = \frac{z - z_1}{z_2 - z_1}$

Reduction of Cartesian Form of The Equation Of A Line to Vector Form And Vice-Versa

Cartesian to Vector Let the cartesian equation of a line be

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c}$$

Then, the vector form of line (i) is $\vec{r} = \vec{a} + \lambda \vec{m}$

$$r = a +$$

 $\vec{r} = (x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}) + \lambda (a \hat{i} + b \hat{j} + c \hat{k}), \text{ where } \lambda \text{ is a parameter.}$ or,

Vector To Cartesian Let the vector equation of a line be

where,
$$\vec{a} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$
, $\vec{m} = a\hat{i} + b\hat{j} + c\hat{k}$ and λ is a parameter.

Then, $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c} = \lambda$ is the cartesian equation of the line.

e-Learning for IIT-JEE | NEET | CBSE |

...(i)

...(ii)

e-Learning for IIT-JEE | NEET | CBSE

Angle Between Two Lines

Vector Form Let the vector equations of the two lines be

$$\vec{r} = \vec{a_1} + \lambda \vec{b_1} \text{ and } \vec{r} = \vec{a_2} + \mu \vec{b_2}.$$
$$\cos \theta = \frac{\vec{b_1} \cdot \vec{b_2}}{|\vec{b_1}| |\vec{b_2}|}$$

Condition of perpendicularity: If the lines $\overrightarrow{b_1}$ and $\overrightarrow{b_2}$ are parallel.

 $\therefore \qquad \overrightarrow{b_1} = \lambda \overrightarrow{b_2} \text{ for some scalar } \lambda.$

Cartesian Form Let the cartesian equations of the two lines be

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1}$$
$$\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2}$$

and,

Let θ be the angle between (i) and (ii).

$$\cos \theta = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Condition of perpendicularity : If the lines are perpendicular, then

$$m_1 \cdot m_2 = 0 \implies a_1 a_2 + b_1 b_2 + c_1 c_2 = 0$$

Condition of parallelism : If the lines are parallel, then m_1 and m_2 are parallel.

$$\therefore \qquad \overrightarrow{m_1} = \lambda \overrightarrow{m_2} \text{ for some scalar } \lambda$$
$$\Rightarrow \qquad \frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Intersection of Two Lines

To determine whether two lines intersect or not and in case they intersect the following algorithm is used to find their point of intersection.

Algorithm Let the two lines be

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b_1} = \frac{z - z_1}{c_1} \qquad \dots (i)$$
$$\frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2} \qquad \dots (i)$$

and,

Step I Write the coordinates of general points on (i) and (ii). The coordinates of general points on (i) and (ii) are given

$$\frac{x - x_1}{a_1} = \frac{y - y_1}{b - 1} = \frac{z - z_1}{c_1} = \lambda \text{ and } \frac{x - x_2}{a_2} = \frac{y - y_2}{b_2} = \frac{z - z_2}{c_2} = \mu \text{ respectively}$$

i.e.
$$(a_1\lambda + x_1, b_1\lambda + y_1, c_1\lambda + z_1)$$
 and $(a_2\mu + x_2, b_2\mu + y_2, c_2\mu + z_2)$

 $\therefore a_1 \ \lambda + x_1 = a_2 \ \mu + x_2, \ b_1 \ \lambda + y_1 = b_2 \ \mu + y_2 \ and \ c_1 \ \lambda + z_1 = c_2 \ \mu + z_2$ **Step III** Solve any two of the equation of λ and μ obtained in step II. If the values of λ and μ satisfy the third equation, then the lines (i) and (ii) intersect. Otherwise they do not intersect.

5