

Complete MATH

IIT-JEE · CBSE eBOOKS CLASS 11&12th

CLASS 12th Probability

Probability

01. Addition Theorem

Independent Events Two events A and B associated to a random experiment are independent if the probability of occurrence or non occurrence of A is not affected by the occurrence or non-occurrence of B.

Three or more events are independent if the probability of occurrence or non-occurrence of any one of them is not affected by the occurrence or non-occurrence of others.

NOTE Sevents associated to independent random experiments are always independent.

Conditional Probability

Let A and B be two events associated with a random experiment. Then, the probability of occurrence of event A under the condition that B has already occurred and $P(B) \neq 0$, is called the conditional probability and it is denoted by P(A/B). Thus, we have P(A/B) = Probability of occurrence of a given that B has already occurred. Similarly, P(B/A) when $P(A) \neq 0$ is defined as the probability of occurrence of event B when A has already occurred. P(A/B) = Probability of occurrence of A when B occurs

Or

P(A|B) = Probability of occurrence of A when B is taken as the sample space Or

P(A/B) = Probability of occurrence of A with respect to B.

and,

P(A|B) = Probability of occurrence of *B* when *A* occurs Or P(A|B) = Probability of occurrence of *B* when *A* is taken as the sample space. Or P(A|B) = Probability of occurrence of *B* with respect to *A*.

Multiplication Theorems on Probability

Theorem I If A and B are two events associated with a random experiment, then $P(A \cap B) = P(A) P(B/A)$, if $P(A) \neq 0$ or, $P(A \cap B) = P(B) P(A/B)$, if $P(B) \neq 0$

NOTE From (i) and (ii) in the above theorem, we find that $P(B|A) = \frac{P(A \cap B)}{P(A)} \text{ and } P(A|B) = \frac{P(A \cap B)}{P(B)}$

Remark If A and B are independent events, then P(A/B) = P(A) and P(B/A) = P(B). $\therefore P(A \cap B) = P(A) P(B)$. Also, $P(A \cup B) = 1 - P(\overline{A}) P(\overline{B})$

3