$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 12th

Probability

01. Addition Theorem

Independent Events Two eventa A and B associated to a random experiment are independent if the probability of occurrence or non occurrence of A is not affected by the occurrence or non-occurrence of B.
Three or more events are independent if the probability of occurrence or non-occurrence of any one of them is not affected by the occurrence or non-occurrence of others.

NOTE Events associated to independent random experiments are always independent.

Conditional Probability

Let A and B be two events associated with a random experiment. Then, the probability of occurrence of event A under the condition that B has already occurred and $P(B) \neq 0$, is called the conditional probability and it is denoted by $P(A / B)$. Thus, we have $P(A / B)=$ Probability of occurrence of a given that B has already occurred.
Similarly, $P(B / A)$ when $P(A) \neq 0$ is defined as the probability of occurrence of event B when A has already occurred.
$P(A / B)=$ Probability of occurrence of A when B occurs
Or
$P(A / B)=$ Probability of occurrence of A when B is taken as the sample space
Or
$P(A / B)=$ Probability of occurrence of A with respect to B.
and,
$P(A / B)=$ Probability of occurrence of B when A occurs
Or
$P(A / B)=$ Probability of occurrence of B when A is taken as the sample space.
Or
$P(A / B)=$ Probability of occurrence of B with respect to A.

Multiplication Theorems on Probability

Theorem I If A and B are two events associated with a random experiement, then
$P(A \cap B)=P(A) P(B / A)$, if $P(A) \neq 0$
or, $\quad P(A \cap B)=P(B) P(A / B)$, if $P(B) \neq 0$

NOTE From (i) and (ii) in the above theorem, we find that $P(B / A)=\frac{P(A \cap B)}{P(A)}$ and $P(A / B)=\frac{P(A \cap B)}{P(B)}$

Remark If A and B are independent events, then $P(A / B)=P(A)$ and $P(B / A)=P(B)$. $\therefore \quad P(A \cap B)=P(A) P(B)$.
Also,

$$
P(A \cup B)=1-P(\bar{A}) P(\bar{B})
$$

