EXAM PATTERN QUESTIONS

JEE ADVANCED 2020

MATHEMATICS

JEE Advanced 2020 CRASH COURSE

JEE Advanced 2020 crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Advanced 2020 in $30-60$ days. It is a focused course for the JEE Advanced aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Advanced 2020. Important problem-solving and revision of all important topics with the last 7 years JEE Advanced analysis. Providing problem-solving tips and tricks for the exam. 100\% JEE Advanced pattern questions with detailed solutions. Those questions are the focus on chapters with a high weight. Misconceptions and repeated errors are cleared by the faculties. The questions of compete syllabus designed by the experienced Misostudy faculty team. Boosts confidence in students so that they can score well.

1. If z, z_{2} are non-zero complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{1}+z_{2}\right|$ then z_{1} / z_{2} can be
(a) 1
(b) ω
(c) ω^{2}
(d) -1
2. Modulus of complex number whose reciprocal is Match the entries in Column I with entries in Column II

Column-I

(a) $\frac{1}{a}+\frac{1}{b+i c}$
(p) $\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|b-c|}$
(b) $\frac{1}{a-i b}-\frac{1}{a-i c}$
(q) $\sqrt{a^{2}+(b+c)^{2}}$
(c) $\frac{b}{a+i b}+\frac{c}{a-i c}$
(d) $\frac{1}{a+i b+i c}$
(r) $\frac{|a| \sqrt{b^{2}+c^{2}}}{\sqrt{(a+b)^{2}+c^{2}}}$
(s) $\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|a||b+c|}$

	p	q		S
(a)	(D)	(${ }^{\text {a }}$	(r)	(5)
(b)	(D)	(${ }^{\text {a }}$	(r)	(5)
(c)	(D)	(${ }^{\text {(}}$	(r)	(5)
(d)	(D)	($)$	(r)	(5)

3. Let α, β be roots of the equation $a x^{2}+b x+c=0$, then equation whose roots are Match the entries in Column-I with entries in Column-II

Column-I

Column-II

(a) $-1 / \alpha,-1 / \beta$
(p) $a x^{2}+2 b x+4 c=0$
(b) $-\alpha,-\beta$
(q) $a^{2} x^{2}+\left(2 a c-b^{2}\right)+c^{2}=0$
(c) α^{2}, β^{2}
(r) $c x^{2}-b x+a=0$
(d) $2 \alpha, 2 \beta$
(s) $a x^{2}-b x+c=0$

4. Statement-I : If all the four roots of $x^{4}-4 x^{3}+a x^{2}-b x+1=0$ are positive, than $a=6$ and $b=4$.
Statement-II : If polynomial equation $P(x)=0$ has four positive roots, then the polynomial equation $P^{\prime}(x)=0$ has atleast 3 positive roots.
(a) Statement-I is True, Statement-II is True; Statement-II is correct explanation for Statement-I.
(b) Statement-I is True, Statement-II is true; Statement-II is not a correct explanation for Statement-I.
(c) Statement-I is True, Statement-II is False.
(d) Statement-I is False, Statement-II is True.
5. Let $a, b, c \in \mathbf{C}$ such that $a+b+c=0$.

If $|a|=|b|=|c|=1$, then $|a-b|^{3}+|b-c|^{3}+$
$|c-a|^{3}-3|a-b||b-c||c-a|$ is equal to
6. $a, b, c \in \mathbf{R}$ and a, b, c are in A.P. Match the expression in Column-I with the conditions/properties in Column-II.

Column-I

Column-II

(a) a^{2}, b^{2}, c^{2} are in A.P. (p) $a=b=c$
(b) a^{2}, b^{2}, c^{2} are in G.P.
(q) $-\frac{1}{2} a, b, c$ are in G.P.
(c) a^{2}, b^{2}, c^{2} are in H.P.
(r) $a, b,-\frac{1}{2} c$ are in G.P.
(d) $a+b+c=\frac{3}{2}$
(s) $\quad b=\frac{1}{2}$

