EXAM PATTERN QUESTIONS

NEET 2020

PHYSICS

NEET 2020 CRASH COURSE

NEET 2020 crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for NEET 2020 in $30-60$ days. It is a focused course for the NEET aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the NEET 2020.

O Important problem-solving and revision of all important topics with the last 7 years NEET analysis. ○ Providing problem-solving tips and tricks for the exam. ○100\% NEET pattern questions with detailed solutions. \bigcirc Those questions are the focus on chapters with a high weight. ○ Misconceptions and repeated errors are cleared by the faculties. O The questions of compete syllabus designed by the experienced Misostudy faculty team. ○ Boosts confidence in students so that they can score well.

1. The period of oscillation (T) depends upon radius R, density ρ and gravitational constant G. Derive formula for T.
(a) $k \rho G^{-1 / 2}$
(c) $k(\rho G)^{-1 / 2}$
(b) $k \rho^{-1 / 2} G$
(d) $k(\rho G)^{1 / 2}$
2. A particle has a velocity $4 \hat{i}-3 \hat{j}$ at any instant and has an acceleration $(-2 \hat{i}+a \hat{j}) \mathrm{ms}^{-2}$. Find the time when the velocity becomes zero and find the value of a :
(a) $2 \mathrm{sec}, 1.5 \mathrm{~ms}^{-2}$
(b) $4 \mathrm{sec}, 3 \mathrm{~ms}^{-2}$
(c) $4 \mathrm{sec}, 2.5 \mathrm{~ms}^{-2}$
(d) $2 \mathrm{sec}, 3 \mathrm{~ms}^{-2}$
3. A 175 m long train is travelling along a straight track with a velocity of $72 \mathrm{~km} \mathrm{~h}^{-1}$. A bird is flying parallel to the train in the opposite direction with a speed of $18 \mathrm{~km} \mathrm{~h}^{-1}$. The time taken by the bird to cross the train is :
(a) 35 s
(c) 27 s
(b) 7 s
(d) 11.6 s
4. Find a vector parallel to $(3 \hat{i}+4 \hat{j})$ and having magnitude equal to 10 .
(a) $8 \hat{i}+6 \hat{j}$
(c) $15 \hat{i}+20 \hat{j}$
(b) $6 \hat{i}+8 \hat{j}$
(d) $5 \hat{i}+5 \sqrt{3} \hat{j}$
5. $\vec{a}+\vec{b}+\vec{c}=0$, then $\vec{b} \times \vec{c}$ is :
(a) $\underset{\rightarrow}{\vec{c}} \times \vec{a}$
(c) $\underset{\rightarrow}{\vec{b}} \times \overrightarrow{\vec{c}}$
(b) $\vec{a} \times \vec{c}$
(d) $\vec{c} \times \vec{b}$
6. A boat crosses from A to B, which are just on the opposite banks. The width of the river is D. the speed of water is v_{ω} and that of boat is v_{B} relative to still water. Assume $v_{B}=2 v_{\omega}$. Time taken by the boat, if it has to cross directly.
(a) $\frac{2 D}{\sqrt{3} \cdot v_{B}}$
(c) $\frac{D}{v_{B} \sqrt{2}}$
(b) $\frac{\sqrt{3} D}{2 v_{B}}$
(d) $\frac{D \sqrt{2}}{v_{B}}$
7. The equation of motion of a projectile is $y=4 x-\frac{x^{2}}{3}$. The horizontal component of velocity is $10 \mathrm{~ms}^{-1}$. Then the range of the projectile is : $\left(g=10 \mathrm{~ms}^{-2}\right)$
(a) 20 m
(c) 80 m
(b) 40 m
(d) 160 m
8. A projectile is projected with an initial velocity of $(5 \hat{i}+8 \hat{j}) \mathrm{ms}^{-1}$. If $g=10 \mathrm{~ms}^{-2}$, then the range of the projectile is :
(a) 8 m
(c) 24 m
(b) 16 m
(d) 4 m
9. Two stones are projected with the same speed but making different angles with the horizontal. Their ranges are equal. Angle of projection of one is $\pi / 3$ and the maximum height reached by it is 102 metre. Then maximum height reached by the other :
(a) 336
(c) 56
(b) 224
(d) 34
