

IIT-JEE · NEET · CBSE eBOOKS

CLASS 11&12th

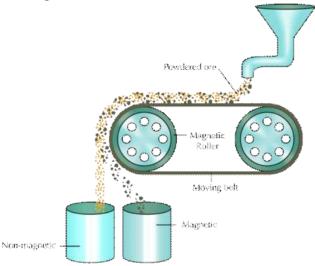
CLASS 12th

General Principles & Isolation of Elements

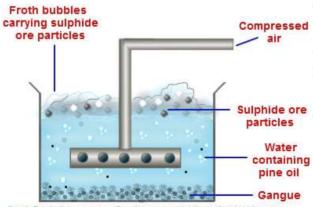
01. Introduction

- (i) **Minerals**: Naturally occurring solid substances having metals in combined state or native state are called minerals. Minerals do not contain NO₃⁻ ion because all nitrate salts are water soluble.
- (ii) **Ore**: A mineral is an ore from which one or more metals can be extracted easily and profitably.
- (iii) Matrix or Gangue: Minerals are always associated with earthy impurities known as matrix or gangue.
- (iv) Flux: It is a substance used to decrease the melting point of an ore or a substance used to react with impurities to form slag.
 - (a) Acidic flux: It converts basic impurities to slag. For example, SiO_2 is used in the metallurgy of copper to remove FeO as $FeSiO_3(slag)$.

 Other acidic fluxs are $\rightarrow B_2O_3$, P_4O_{10} etc. $FeO + SiO_2 \rightarrow FeSiO_3$
 - (b) Basic flux: It converts acidic impurities to slag. For example, CaO is used in the metallurgy of iron to remove SiO₂ as CaSiO₃ (slag).
 Other basic fluxs are → CaCO₃, MgCO₃, MgO etc. SiO₂ + CaO → CaSiO₃
- (v) **Slag**: The low fusible substance produced by the reaction of flux with impurities during extraction of metals, is called slag. The process is called slagging operation.
- (vi) Alloy: It is a homogeneous mixture of a metal with one or more elements that may be metals or non-metals.
- (vii) Metallurgy: The complete scientific and technological process employed for the extraction of a metal from its ore is called metallurgy.


02. Occurrence of Metals

Metal	Mineral	Average composition
Iron	Haematite	Fe ₂ O ₃
	Magnetite	Fe_2O_4
	Iron pyrites	FeS ₂
	Siderite	FeCO ₃
	Chromite	FeO.Cr ₂ O ₃
Copper	Chalcopyrites or copper pyrites (Fool's gold)	CuFeS ₂ [Actual form : Cu ₂ S.Fe ₂ S ₃]
	Copper glance	Cu_2S
	Cuprite	Cu ₂ O
	Malachite	CuCO ₃ .Cu(OH) ₂
	Azurite	2CuCO ₃ .Cu(OH) ₂
Aluminium	Bauxite	$AlO_x(OH)_{3-2x}[0 < x < 1]$ major
		form is Al ₂ O ₃ .2H ₂ O
	Cryolite	Na ₃ AlF ₆
	Kaolinite (a clay)	[Al2(OH)4.Si2O5]
	China clay	Al ₂ O ₃ .SiO ₂ .2H ₂ O


Metal	Mineral	Average composition
Zinc	Sphalerite or Zinc Blende	ZnS
	Zincite	ZnO
	Smithsonite or Calamine	ZnCO ₃
Silver	Argentite or Silver galnce Horn silver	Ag ₂ S AgSl

03. Extraction of Metals and Non-metals (General)

- (i) **Pulverisation:** The lumps of ore are converted to small pieces by using jaw crushers and to powder by employing stamp mill or ball mill.
- (ii) Magnetic separation: This method is employed to separate the magnetic and non-magnetic components present in the ore by carrying the powdered ore on a conveyer belt passing over an electromagnetic roller.

- (iii) **Hydraulic washing :** This method is employed to purify heavier ore such as oxides (e.g., haematite, tin stone etc.), carbonates (e.g., calamine, malachite, etc), native gold, etc.
- (iv) Froth floatation process: This method is employed to purify/concentrate sulphide ores.

Froth floatation process for the concentration of sulphide ores.

(v) Leaching :
$$Al_2O_3.2H_2O + 2NaOH \xrightarrow{45\%NaOH} 2NaAlO_2 + 3H_2O$$

 $NaAlO_2 + H_2O \xrightarrow{Al(OH)_3} Al(OH)_3 + NaOH$
 $2Al(OH)_3 + H_2O \xrightarrow{1200^{\circ}C} Al_2O_3 + 3H_2O$

- (vi) Conversion of Ore to Oxide Form:
 - (a) Calcination: Conversion of hydrated oxides, carbonates, basic carbonates and hydroxide ores to their oxides by heating in the absence of O₂ below their melting point is known as calcination.

$$ZnCO_3(s) \xrightarrow{\Delta} ZnO(s) + CO_2 \uparrow$$

(b) **Roasting**: Sulphide ores are generally roasted in reverberatory furnace in free supply of air below melting point.

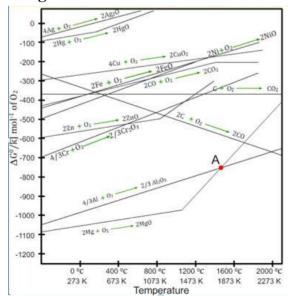
$$2ZnS + 3O_2 \xrightarrow{\Delta} 2ZnO + 2SO_2$$

- (vii) Reduction of oxide to metal:
 - (a) Smelting: Carbon reduction method

$$ZnO + C \xrightarrow{\approx 1400^{\circ}C} > CO + Zn$$

(b) Reduction by H₂

$$WO_3 + 3H_2 \longrightarrow W + 3H_2O$$


(c) Metals as reducing agents

$$TiCl_4 + 2Mg \longrightarrow 2MgCl_2 + Ti$$

(d) Auto reduction or self reduction or air reduction method

$$Cu_2S \xrightarrow{O_2/\Delta} Cu_2O \xrightarrow{Cu_2S/\Delta} Cu + SO_2$$

04. Ellingham Diagrams

