

Ho

Complete CHEMISTRY

IIT-JEE · NEET · CBSE eBOOKS CLASS 11&12th

CLASS 11th Ionic Equilibrium

Ionic Equilibrium

01. Arrhenius Concept (1887)

- (i) According to this concept all substances which give H^+ ions, when dissolved in water are called **Acids**.
- (ii) Those which ionise in water to furnish OH⁻ ions are called Bases.
 e.g.

$$HA \xrightarrow{H_2O} H^+ + A^-$$
(a) (Acid)
$$H^+ + A^-$$
(b) (Base)
$$H^+ + OH^-$$

Limitations of Arrhenius concept:

- (i) Applicable only to aqueous solution. Dry HCl shall not act as an acid.
- (ii) The concept does not explain acidic or basic properties in non aqueous solvents.
- (iii) It fails to explain acidic character of no protic compound viz. SO2,NO2,CO2,P2O5
- (iv) It fails to explain the basic nature of compounds viz. NH3, Na₂CO₃
- (v) It fails to explain the acidic nature of certain salts in water e.g. AlCl₃, FeCl₃

Basicity or protocity of an Acid:

It is the number of H^+ ions furnished by a molecule of an acid. An acid may be classified according to its basicity. Thus we may have,

- (i) Mono basic or Mono protic acids like HCl, HNO₃CH₃COOH,HCN etc.
- (ii) Dibasic or Diprotic acids like, H₂SO₄, H₂CO₃, H₂BO₃, etc.
- (iii) Tribasic or Triprotic acids like H₃PO₄, H₃AsO₄, etc.

Acidity or Hydroxity of a Base

It may be defined as the number of OH^- ions furnished by a molecular of base. A base can be,

- (i) Mono acidic or monohydroxic like NaOH, NH₄OH, AgOH etc.
- (ii) Diacidic or dihydroxic like Ba(OH)₂, Mg(OH)₂, Ca(OH)₂, Sr(OH)₂ etc.
- (iii) Triacidic or trihydroxic like Fe(OH)₃, Al(OH)₃ etc.

Strength of Acid or Base:

(i) Strength of Acid or Base depends on the extent of its ionisation. Hence equilibrium constant K_a or K_b respectively of the following equilibria give a quantitative measure of the strength of acid or base.

(a) HA
$$\xrightarrow{H_2O}$$
 H⁺ + A⁻ ; K_a = $\frac{[H^+][A^-]}{[HA]}$
(b) BOH $\xrightarrow{H_2O}$ B⁺ + OH⁻ ; K_b = $\frac{[B^+][OH^-]}{[BOH]}$

(ii) The larger the value of Ka or kb, the more complete the ionisation, the higher the concentration of H_3O^+ or OH^- and stronger is the acid or base.

3

02. Bronsted Lowery Concept (1923)

In 1923, a more general concept of acids and bases was introduced by Bronsted & Lowery. According to Bronsted-Lowery definition

- (i) An acid is a substance that accepts a proton and
- (ii) A base is a substance that accepts a proton.
- (iii) In a typical acid- base reaction,

 $HX + B \rightleftharpoons X^- + HB^+$

Here HX being a proton donor is an Acid and B being a proton acceptor is a Base in the forward reaction,

(iv) In the backward reaction HB^+ being a proton donor is an acid and X^- being a proton donor acceptor is a base

e.g.		Acid	Ba	se	C	Conjugate	acid	Conjugate base	
	(b)	HCL	+	${\rm H}_2{\rm O}$	≑	$\mathrm{H_{3}O}^{+}$	+	Cl	
	(a)	HSO_4^-	+	NH_3	≑	$\mathrm{NH_4}^+$	+	SO_4^{2-}	
	(c)	$\mathrm{NH_4}^+$	+	${\rm H}_2{\rm O}$	⇒	$\mathrm{H_{3}O^{+}}$	+	NH ₃	
					njugato njugato			0	

Classification of Bronsted-Lowery Acid & Bases:

Bronsted-Lowery acids and bases can be

- (i) Molecular
- (ii) Cationic
- (iii) Anionic

Туре	Acid	Base
Molecular	HCl, HNO ₃ , HClO ₄ ,	NH ₃ , N ₂ H ₄ , Amines
	H_2SO_4, H_3PO_4	H2O, Alocohol, Ethers
	CH ₃ COOH, HBr,	
	H_2O etc.	
Cationic	NH4 ⁺ , N ₂ H5 ⁺ , PH4 ⁺ ,	$[Fe(H_2O)_5OH]^{2+}$
	Na ⁺ , Ba ²⁺ (All cation)	$\left[\mathrm{Al}(\mathrm{H}_{2}\mathrm{O})_{5}\mathrm{OH}\right]^{2+}$
	$[Fe(H_2O)_6]^{3+}$	
	$[Al(H_2O)_6]^{3+}$	
Anionic	HS ⁻ , HSO ₃₋	
	H_2PO4^- , HSO_4^- ,	Cl ⁻ , Br ⁻ , OH ⁻
	HCO_3^{-} , $HOPO_4^{2-}$,	HSO_4^- CN ⁻ , CO_3^{2-}
	all amphiprotic anions	SO4 ²⁻ , NH2 ⁻ , CH3COO ⁻

Classification of Solvents:

Protonic or protic solvents :

- (i) They are characterized by the presence of transferable hydrogen and the formation of "Onium" ions. Autoionisation taking place in them.
 - (a) $H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$
 - (b) $NH_3 + NH_3 \rightleftharpoons NH_4^+ + NH_2^-$
 - (c) $3HX \Rightarrow H_2X + HX_2^-$
 - (d) $2H_2SO_4 \implies H_3SO_4^+ + HSO_4^-$

4