$\underset{\text { smanteanno }}{\text { miscstudy.com }}$

Learning Inquiry
8929803804

CLASS 12th

Continuity \& Differentiability

Continuity \& Differentiability

01. Continuity at a Point

DEFINITION:

A function $f(x)$ is said to be continuous at a point $x=a$ of its domain, iff $\lim _{x \rightarrow a} f(x)=f(a)$.
Thus, $\quad(f(x)$ is continuous at $x=a)$
$\Leftrightarrow \quad \lim _{x \rightarrow a} f(x)=f(a)$
$\Leftrightarrow \quad \lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)=f(a)$

REMARK (i) If $f(x)$ is not continuous at a point $x=a$, then it is said to be discontinuous at $x=a$.
(ii) If $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x) \neq f(a)$, then the discontinuity is known as the removable discontinuity.
(iii) If $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$, then $f(x)$ is said to have a discontinuity of first kind.
(iv) A function $f(x)$ is said to have discontinuity of the second kind at $x=a$ iff $\lim _{x \rightarrow a^{-}} f(x)$ or, $\lim _{x \rightarrow a^{+}} f(x)$ or both do not exist.
(v) A function $f(x)$ is said to be left continuous or continuous from the left at $x=a$, iff
(a) $\lim _{x \rightarrow a^{-}} f(x)$ exists and,
(b) $\lim _{x \rightarrow a^{-}} f(x)=f(a)$

A function $f(x)$ is said to be right continuous or continuous from the right at $x=a$, iff
(a) $\lim _{x \rightarrow a^{+}} f(x)$ exists and,
(b) $\lim _{x \rightarrow a^{+}} f(x)=f(a)$

It follows from the above definitions that
$f(x)$ is continuous at $x=a$ iff it is both left as well as right continuous at $x=a$.
(vi) A function $f(x)$ fails to be continuous at $x=a$ for any of the following reasons.
(a) $\lim _{x \rightarrow a} f(x)$ exists but it is not equal to $f(a)$.
(b) $\lim _{x \rightarrow a} f(x)$ does not exist.

This happens if either $\lim _{x \rightarrow a^{-}} f(x)$ does not exist or, $\lim _{x \rightarrow a^{+}} f(x)$ does not exist or both $\lim _{x \rightarrow a^{-}} f(x)$ and $\lim _{x \rightarrow a^{+}} f(x)$ exist but are not equal.
(c) f is not defined at $x=a$ i.e. $f(a)$ does not exist.

