MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 09. Areas of Parallelograms and Triangles

01. Parallelograms on the Same Base and Between The Same

Base : For base of a parallelogram is any side of it. **Altitude :** For each base of a parallelogram, the corresponding altitude is the line segment form a point on the base, perpendicular to the line containing the opposite side.

<u>Result</u> A diagonal of a parallelogram divides it into two triangles of equal area. **Given :** A parallelogram *ABCD* in which *BD* is one of the diagonals. **To Prove :** $ar (\Delta ABD) = ar (\Delta CDB)$

Proof: Since two congruent geometrical figures have equal area. Therefore, in order to prove that $ar (\Delta ABD) = ar (\Delta CDB)$ it is sufficient to show that

$\Delta ABD \cong \Delta CDB$	
In $\Delta s \ ABD$ and CDB , we have	
AB = CD	[\therefore ABCD is a \parallel^{gm} \therefore AD = CD]
AD = CB	[$\therefore ABCD$ is a $\parallel^{gm} \therefore AD = CB$]
and, $BD = DB$	[Common side]
So, by SSS criterion of congruence, we obtain	
$\Delta ABD \cong \Delta CDB$	

Hence, $ar (\Delta ABD) = ar (\Delta CDB)$

<u>Result</u> Parallelograms on the same base and between the same parallels are equal in area. **Given**: Two parallelograms ABCD and ABEF, which have the same base AB and which are between the same parallel lines AB and FC. **To Prove**: ar ($||^{gm} ABCD$) = ar ($||^{gm} ABCD$)

> MISOSTUDY.COM The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

Proof : In Δs ADF and BCE, we have AD = BC $[:: ABCD \text{ is a } \parallel^{\text{gm}} :: AD = BC]$ AF = BE[\therefore ABEF is a \parallel^{gm} \therefore AF = BE] $\angle DAF = \angle CBE$ [\therefore AD || BC and AF || BE \therefore Angle between AD and AF and, Angle between BC and $BE \Rightarrow \angle DAF = \angle CBE$] So, by SAS criterion of congruence, we obtain $\Delta ADF = \Delta BCE$ $ar (\Delta ADF) = ar (\Delta BCE)$ [By Congruence area axiom] ...(i) Now. $ar (\parallel^{gm} ABCD) = ar (\square ABED) + ar (\triangle BCE)$ [By Area addition axiom] \Rightarrow $ar (\parallel^{gm} ABCD) = ar (\square ABED) + ar (\triangle ADF)$ [Using (i)] $ar (\parallel^{gm} ABCD) = ar (\parallel^{gm} ABEF)$ \Rightarrow Hence, $ar (\parallel^{gm} ABCD) = ar ((\parallel^{gm} ABEF))$

Corollary : A parallelogram and a rectangle on the same base and between the same parallels are equal in area.

<u>Result</u> The area of a parallelogram is the product of its base and the corresponding altitude. **Given** : A parallelogram *ABCD* in which *AB* is the base and *AL* the corresponding altitude. **To Prove** : ar ($||^{\text{gm}} ABCD$) = *AB* × *AL*

Construction : Complete the rectangle ALMB by drawing $BM \perp CD$.

Poof: Since $(ar \parallel^{gm} ABCD)$ and rectangle *ALMB* are on the same base and between the same parallels.

 \therefore ar ($\parallel^{gm} ABCD$)

= ar (rect. ALMB)

= $AB \times AL$ [By rectangle area axiom, area of a rectangle = Base × height] Hence, $(ar \parallel^{\text{gm}} ABCD) = AB \times AL$

