MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 09. Areas of Parallelograms and Triangles

01. Parallelograms on the Same Base and Between The Same

Base : For base of a parallelogram is any side of it.
Altitude : For each base of a parallelogram, the corresponding altitude is the line segment form a point on the base, perpendicular to the line containing the opposite side.

Result A diagonal of a parallelogram divides it into two triangles of equal area.
Given : A parallelogram $A B C D$ in which $B D$ is one of the diagonals.
To Prove : ar $(\triangle A B D)=a r(\triangle C D B)$

Figure
Proof : Since two congruent geometrical figures have equal area. Therefore, in order to prove that ar $(\triangle A B D)=\operatorname{ar}(\triangle C D B)$ it is sufficient to show that $\triangle A B D \cong \triangle C D B$
In $\triangle s A B D$ and $C D B$, we have

$$
\begin{array}{ll}
A B=C D & {\left[\because A B C D \text { is a } \|^{\mathrm{gm}} \therefore A D=C D\right]} \\
A D=C B & {\left[\because A B C D \text { is a } \|^{\mathrm{gm}} \therefore A D=C B\right]} \\
B D=D B & {[\text { Common side }]}
\end{array}
$$

and, $\quad B D=D B$
So, by SSS criterion of congruence, we obtain

$$
\triangle A B D \cong \triangle C D B
$$

Hence, $\operatorname{ar}(\triangle A B D)=\operatorname{ar}(\triangle C D B)$

Result Parallelograms on the same base and between the same parallels are equal in area. Given : Two parallelograms $A B C D$ and $A B E F$, which have the same base $A B$ and which are between the same parallel lines $A B$ and $F C$.
To Prove : ar $\left(\|^{\mathrm{gm}} A B C D\right)=a r\left(\|^{\mathrm{gm}} A B C D\right)$

Figure
Proof : In $\triangle s A D F$ and $B C E$, we have

$$
\begin{array}{ll}
A D=B C & {\left[\because A B C D \text { is a } \|^{\mathrm{gm}} \therefore A D=B C\right]} \\
A F=B E & {\left[\because A B E F \text { is a } \|^{\mathrm{gm}} \therefore A F=B E\right]} \\
\angle D A F=\angle C B E & {[\because A D \| B C \text { and } A F \| B E \therefore \text { Angle between } A D \text { and } A F} \\
& \text { Angle between } B C \text { and } B E \Longrightarrow \angle D A F=\angle C B E]
\end{array}
$$

and,

So, by SAS criterion of congruence, we obtain
$\triangle A D F=\triangle B C E$
$\operatorname{ar}(\triangle A D F)=\operatorname{ar}(\triangle B C E) \quad$ [By Congruence area axiom] ...(i)
Now,

```
    ar (|\mp@subsup{|}{}{\textrm{m}}ABCD)=ar(\squareABED)+ar (\triangleBCE) [By Area addition axiom]
mar (|}\mp@subsup{|}{}{\textrm{gm}}ABCD)=ar(\squareABED)+ar(\triangleADF) [Using (i)
ar (|\mp@subsup{|}{}{\textrm{m}}ABCD)=ar(|\mp@subsup{|}{}{\textrm{gm}}ABEF)
Hence, ar (||}\mp@subsup{}{}{\textrm{gm}}ABCD)=ar((|\mp@subsup{|}{}{\textrm{gm}}ABEF
```

Corollary : A parallelogram and a rectangle on the same base and between the same parallels are equal in area.

Result The area of a parallelogram is the product of its base and the corresponding altitude.
Given : A parallelogram $A B C D$ in which $A B$ is the base and $A L$ the corresponding altitude.
To Prove : ar $\left(\|^{\mathrm{gm}} A B C D\right)=A B \times A L$
Construction : Complete the rectangle $A L M B$ by drawing $B M \perp C D$.

Figure
Poof : Since $\left(\right.$ ar $\left.\|^{\mathrm{gm}} A B C D\right)$ and rectangle $A L M B$ are on the same base and between the same parallels.

$$
\begin{aligned}
\therefore \quad & \operatorname{ar}\left(\|^{\mathrm{gm}} A B C D\right) \\
& =\operatorname{ar}(\text { rect. } A L M B) \\
& =A B \times A L \quad[\text { By rectangle area axiom, area of a rectangle }=\text { Base } \times \text { height }]
\end{aligned}
$$

Hence, $\left(\right.$ ar $\left.\|^{\mathrm{gm}} A B C D\right)=A B \times A L$

