CLASS NOTES FOR CBSE

Chapter 20. Arithmetic Progressions

01. Arithmetic Progression

A sequence $a_1, a_2, a_3, \dots, a_n, \dots$ is called an arithmetic progression, if there exists a constant number d such that

 $a_{2} = a_{1} + d$ $a_{3} = a_{2} + d$ $a_{4} = a_{3} + d$ $\vdots \qquad \vdots$ $a_{n} = a_{n-1} + d \text{ and so on.}$

The constant 'd' is called the common difference of the A.P.

Thus, if the first term is a and the common difference is d, then

$$a, a+d, a+2d, a+3d, a+4d, \dots$$

is an arithmetic progression.

In other words, a sequence $a_1, a_2, a_3, \dots, a_n, \dots$ is called an arithmetic progression if the difference of a term and the preceding term is always constant. This constant is called the common difference of the A.P.

Thus, if $a_1, a_2, a_3, \dots, a_n, \dots$ is an A.P. with common difference 'd', then,

on.

$$a_2 - a_1 = d$$

 $a_3 - a_2 = d$
 $a_4 - a_3 = d$
 \vdots \vdots
 $a_n - a_{n-1} = d$ and so

It follows from the above discussion that the sequence $a_1, a_2, a_3, \dots, a_n, a_{n+1} \dots$ is an A.P. with common difference 'd' if and only if

 $a_{n+1} - a_n = d$ for n = 1, 2, 3, 4, ...

This suggests us the following algorithm to determine whether a sequence is an A.P. or not when we are given an algebraic formula for the general term of the sequence.

Algorithm

- Step I. Obtain a_n
- Step II. Replace *n* by (n+1) is a_n to get a_{n+1}

MISOSTUDY.COM

- Step III. Calculate $a_{n+1} a_n$
- Step IV. Check the value of $a_{n+1} a_n$. If $a_{n+1} a_n$ is independent of *n*, then the given sequence is an A.P. Otherwise it is not an A.P.

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

Example :	Which of the following list of numbers form an AP? If they form an AP, write
	the next two terms.
	(i) 1, -1, -3, -5,
	(ii) 1, 1, 1, 2, 2, 2, 3, 3, 3,
Solution :	(i) $a_2 - a_1 = -1 - 1 = -2$
	$a_3 - a_2 = -3 - (-1) = -3 + 1 = -2$
	$a_4 - a_3 = -5 - (-3) = -5 + 3 = -2$
	i.e., $a_{k+1} - a_k$ is the same every time.
	So, the given list of numbers forms an AP with the common difference
	d = -2. The next two terms are :
	-5 + (-2) = -7 and $-7 + (-2) = -9$
	(ii) $a_2 - a_1 = 1 - 1 = 0$
	$a_3 - a_2 = 1 - 1 = 0$
	$a_4 - a_3 = 2 - 1 = 0$
	Here, $a_2 - a_1 = a_3 - a_2 \neq a_4 - a_3$.
	So, the given list of numbers does not form an AP.
	so, the given list of humbers does not form un Mr.

02. General Term of An A.P.

Result : Let a be the first term and d be the common difference of an A.P. Then, its nth term or general term is given by

$$a_n = a + (n-1) d$$
.

Remark : It is evident from the above theorem that General term of an A.P. = First term + (Term number -1) × (Common difference)

nth Term of an A.P. from the end

Let there be an A.P. with first term a and common difference d. If there are m terms in the A.P., then

*n*th term from the end = (m - n + 1)th term the beginning

 \Rightarrow *n*th term from the end = a_{m-n+1}

 \Rightarrow *n*th term from the end = a + (m - n + 1 - 1) d

 \Rightarrow *n*th term from the end = a + (m - n) d

Also, if l is the last term of the A.P., then *n*th term from the end is the *n*th term of an A.P. whose first term is l and common difference is -d.

 \therefore *n*th term from the end = Last term + (n-1) (-d)

 \Rightarrow *n*th term from the end = l - (n - 1) d

Middle Term(s) of a Finite A.P.

Let there be a finite A.P. with first them *a*, common difference *d* and number of terms *n*. If *n* is odd, then $\left(\frac{n+1}{2}\right)^{th}$ term is the middle term and is given by $a + \left(\frac{n+1}{2} - 1\right)d$. If *n* is even, then $\left(\frac{n}{2}\right)^{th}$ and $\left(\frac{n}{2} + 1\right)^{th}$ are middle terms given by $a + \left(\frac{n}{2} - 1\right)d$ and $a + \left(\frac{n}{2} + 1 - 1\right)d = a + \frac{n}{2}d$ respectively.

MISOSTUDY.COM

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804