MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 20. Arithmetic Progressions

01. Arithmetic Progression

A sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ is called an arithmetic progression, if there exists a constant number d such that

$$
\begin{aligned}
& a_{2}=a_{1}+d \\
& a_{3}=a_{2}+d \\
& a_{4}=a_{3}+d \\
& \vdots \\
& \quad \vdots \\
& a_{n}=a_{n-1}+d \text { and so on. }
\end{aligned}
$$

The constant ' d ' is called the common difference of the A.P.
Thus, if the first term is a and the common difference is d, then

$$
a, a+d, a+2 d, a+3 d, a+4 d
$$

is an arithmetic progression.
In other words, a sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ is called an arithmetic progression if the difference of a term and the preceding term is always constant. This constant is called the common difference of the A.P.
Thus, if $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ is an A.P. with common difference ' d ', then,

$$
\begin{aligned}
& a_{2}-a_{1}=d \\
& a_{3}-a_{2}=d \\
& a_{4}-a_{3}=d \\
& \vdots \\
& \quad \vdots \\
& a_{n}-a_{n-1}=d \text { and so on. }
\end{aligned}
$$

It follows from the above discussion that the sequence $a_{1}, a_{2}, a_{3}, \ldots, a_{n}, a_{n+1} \ldots$ is an A.P. with common difference ' d ' if and only if

$$
a_{n+1}-a_{n}=d \text { for } n=1,2,3,4, \ldots
$$

This suggests us the following algorithm to determine whether a sequence is an A.P. or not when we are given an algebraic formula for the general term of the sequence.

Algorithm

Step I. Obtain a_{n}
Step II. Replace n by $(n+1)$ is a_{n} to get a_{n+1}
Step III. Calculate $a_{n+1}-a_{n}$
Step IV. Check the value of $a_{n+1}-a_{n}$. If $a_{n+1}-a_{n}$ is independent of n, then the given sequence is an A.P. Otherwise it is not an A.P.

Example : Which of the following list of numbers form an AP? If they form an AP, write the next two terms.
(i) $1,-1,-3,-5, \ldots$
(ii) $1,1,1,2,2,2,3,3,3, \ldots$

Solution : \quad (i) $\quad a_{2}-a_{1}=-1-1=-2$
$a_{3}-a_{2}=-3-(-1)=-3+1=-2$
$a_{4}-a_{3}=-5-(-3)=-5+3=-2$
i.e., $a_{k+1}-a_{k}$ is the same every time.

So, the given list of numbers forms an AP with the common difference $d=-2$. The next two terms are : $-5+(-2)=-7$ and $-7+(-2)=-9$
(ii) $a_{2}-a_{1}=1-1=0$
$a_{3}-a_{2}=1-1=0$
$a_{4}-a_{3}=2-1=0$
Here, $a_{2}-a_{1}=a_{3}-a_{2} \neq a_{4}-a_{3}$.
So, the given list of numbers does not form an AP.

02. General Term of An A.P.

Result : Let a be the first term and d be the common difference of an A.P. Then, its nth term or general term is given by

$$
a_{n}=a+(n-1) d .
$$

Remark : It is evident from the above theorem that
General term of an A.P. $=$ First term $+($ Term number -1$) \times($ Common difference $)$

$n^{\text {th }}$ Term of an A.P. from the end

Let there be an A.P. with first term a and common difference d. If there are m terms in the A.P., then
nth term from the end $=(m-n+1)$ th term the beginning
$\Rightarrow \quad n$th term from the end $=a_{m-n+1}$
$\Rightarrow \quad n$th term from the end $=a+(m-n+1-1) d$
$\Rightarrow \quad n$th term from the end $=a+(m-n) d$
Also, if l is the last term of the A.P., then nth term from the end is the nth term of an A.P. whose first term is l and common difference is $-d$.
$\therefore \quad n$th term from the end $=$ Last term $+(n-1)(-d)$
$\Rightarrow \quad n$th term from the end $=l-(n-1) d$

Middle Term(s) of a Finite A.P.

Let there be a finite A.P. with first them a, common difference d and number of terms n. If n is odd, then $\left(\frac{n+1}{2}\right)^{\text {th }}$ term is the middle term and is given by $a+\left(\frac{n+1}{2}-1\right) d$. If n is even, then $\left(\frac{n}{2}\right)^{t h}$ and $\left(\frac{n}{2}+1\right)^{t h}$ are middle terms given by $a+\left(\frac{n}{2}-1\right) d$ and $a+\left(\frac{n}{2}+1-1\right) d=a+\frac{n}{2} d$ respectively

