MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 16. Real Numbers

01. Euclid's Division Lemma

Euclid's Division Lemma : Let a and b be any two positive integers. Then, there exist unique integers q and r such that

$$
a=b q+r, 0 \leq r<b
$$

If $b \mid a$, then $r=0$. Otherwise, r satisfies the stronger inequality $0<r<b$.

Remark I The above Lemma is nothing but a restatement of the long division process we have been doing all these years, and that the integers q and r are called the quotient and remainder, respectively.
Remark II The above Lemma has been stated for positive integers only. But, it can be extended to all integers as stated below :
Let a and b any two integers with $b \neq 0$. Then, there exist unique integers q and r such that

$$
a=b q+r \text {, where } 0 \leq<|\mathbf{b}|
$$

Remark III

(i) When a positive integer is divided by 2, the remainder is either 0 or 1 . So, any positive integer is of the form $2 m, 2 m+1$ for some interger m.
(ii) When any positive integer is divided by 3, the remainder is 0 or 1 or 2 . So, any positive integer can be written in the form $3 m, 3 m+2$ for some integer m.
(iii) When a positive integer is divided by 4, the remainder can be 0 or 1 or 2 or 3. So, any positive integer is of the form $4 q$ or, $4 q+1$ or, $4 q+3$.
Example Show that any positive odd integer is of the form $4 q+1$ or $4 q+3$, where q is some integer.
Solution Let a be any odd positive integer and $b=4$. By division Lemma there exists integers q and r such that

$$
\begin{aligned}
& \begin{aligned}
& a=4 q+r, \text { where } 0 \leq r<4 \\
& \Rightarrow \quad a=4 q \text { or, } a=4 q+1 \text { or, } a=4 q+2 \text { or, } a=4 q+3 \\
& \quad[\because 0 \leq r<4 \Rightarrow r=0,1,2,3]
\end{aligned} \\
& \Rightarrow \quad a=4 q+1 \text { or, } a=4 q+3 \\
& {[\because a \text { is an odd integer } \therefore a \neq 4 q, a \neq 4 q+2] }
\end{aligned}
$$

Hence, any odd integer is of the form $4 q+1$ or, $4 q+3$.

02. Euclid's Division Algorithm

In order tlo compute the $H C F$ of two positive intgers, say a and b, with $a>b$ we may follow the following steps :
Step I Apply Euclid's division lemma to a and b and obtain whole numbers q_{1} and r_{1} such that $a=b q_{1}+r_{1}, 0 \leq r_{1}<b$.
Step II If $r_{1}=0, b$ is the HCF of a and b
Step III If $r_{1} \neq 0$, apply Euclid's division lemma to b and r_{1} and obtain two whole numbers q_{1} and r_{2} such that $b=q_{1} r_{1}+r_{2}$.
Step IV If $r_{2}=0$, then r_{2} is the HCF of a and b.
Step V If $r_{2} \neq 0$, then apply Euclid's division lemma to r_{1} and r_{2} and continue the above process till the remainder r_{n} is zero. The divisor at this stage i.e. r_{n-1}, or the non-zero remainder at the previous stage, is the HCF of a and b.
Example Use Euclid's division algorithm to find the HCF of 4052 and 12576.
Solution Given integers are 4052 and 12576 such that $12576>4052$. Applying Euclid's division lemma to 12576 and 4052, we get

Since the remainder $420 \neq 0$. So, we apply the division lemma to 4052 and 420 , to get
$4052=420 \times 9+272$

We consider the new divisor 420 and the new remainder 272 and apply division lemma to get
$420=272 \times 1+148$

$$
\left[\begin{array}{c}
1 \tag{iii}\\
\because 2 7 2 \longdiv { 4 2 0 } \\
\frac{272}{148}
\end{array}\right]
$$

Let us now consider the new divisor 272 and the new remainder 148 and apply division lemma to get
$272=148 \times 1+124$
\ldots (iv) $\left[\begin{array}{r}1 \\ \because 1 4 8 \longdiv { 4 2 0 } \\ \frac{148}{124}\end{array}\right]$

