MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 17. Polynomials

01. Polynomial

Let x be a variable (literal), n be a positive integer and $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ be constants (real numbers). Then, $a_{n} x_{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+a_{1} x+a_{0}$ is known as a polynomial in variable x.
$f(x), g(x), h(x)$ etc. is used to denote a polynomial in variable x.
Example $f(x)=2 x^{3}+7 x^{2}-4 x+15$ and $g(x)=3 x^{4}+7 x^{2}-5$ are polynomials in variable x. However, $7 x^{3}-2 x^{2}+3 \sqrt{x}-4$ is not a polynomial as the exponent of x in $3 \sqrt{x}$ is not positive integer. Also, $x^{2}-x+\frac{2}{x}$ is not a polynomial in x.

Terms and their Coefficients

If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{1} x+a_{0}$ is a polynomials in variable x, then $a_{n} x^{n}, a_{n-1} x^{n-1}+a_{n-2} x^{n-2}, \ldots, a_{1} x+a_{0}$ are known as their coefficients. The coefficient a_{n} of the highest degree term is caleld the leading coefficient and a_{0} is called the constant term.
In the polynomial $f(x)=2 x^{2}-7 x+8,2 x^{2},-7 x$ and 8 are its terms and $2,-7$ and 8 are coefficients of x^{2}, x and constant term respectively.

Example In the polynomial $g(x)=3 x^{4}-7 x^{2}+2 x-3$, the coefficient of x^{3} is 0 whereas the constant term is -3 .

Degree of A Polynomial

The exponent of the highest degree term in a polynomial is known as its degree.
$f(x)=4 x^{3}-2 x^{2}+8 x-21$ and $g(x)=7 x^{2}-3 x+12$ are polynomials of degree 3 and 2 respectively.

Remark

 $f(x)=a_{n} x_{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{n-1} x+a_{n}$ is a polynomial of degree n, if $a_{n} \neq 0$.
Constant Polynomial

A polynomial of degree zero is called a constant polynomial.
For example, $f(x)=2, g(x)=-12, h(y)=\frac{3}{2}$ etc. are constant polynomials.

The constant polynomial 0 or $f(x)=0$ is called the zero polynomial. The degree of zero polynomial is not defined, because $f(x)=0, g(x)=0 x, h(x)=0 x^{2}, p(x)=0 x^{3} q(x)=0 x^{10}$ etc. are equal to zero polynomial.

Linear Polynomials A polynomial of degree one is called a linear polynomial.
For example, $f(x)=x-12, g(x)=12 x, h(x)=-7 x+8$ are linear polynomials. In general, $f(x)=a x+b, a \neq 0$ is a linear polynomial.

Remark A linear polynomial may be a monomial or a binomial. Because, linear

 polynomial $f(x)=7 x-15$ is a binomial whereas $g(x)=3 x$ is a monomial.Quadratic Polynomials A polynomial of degree 2 is known as a quadratic polynomial.
For example, $f(x)=2 x^{2}-3 x+15, g(x)=\frac{3}{2} y^{2}-4 y+\frac{11}{3}$ etc are quadratic polynomials. In general, $f(x)=a x^{2}+b x+c, a \neq 0$ is a quadratic polynomial.

> Remark
> A quadratic polynomial may be a monomial or a binomial or a trinomial. Because, $f(x)=7 x^{2}$ is a monomial, $g(x)=2 x^{2}+3$ is a binomial and $h(x)=3 x^{2}-2 x+4$ is a trinomial.

Cubic Polynomials A polynomial of degree 3 is called a cubic polynomial.
For example, $f(x)=12 x^{3}-4 x^{2}+7 x-6, g(x)=7 x^{3}+4 x-12$ etc are cubic polynomials.
Thus, $f(x)=a x^{3}+b x^{2}+c x+d, a \neq 0$ is a cubic polynomial.

02. Zeros (Roots) of A Polynomial

Value of A Polynomial The value of a polynomial $f(x)$ at $x=\alpha$ is obtained by substituting $x=\alpha$ in the given polynomial and is denoted by $f(\alpha)$.
The value of the quadratic polynomial $f(x)=8 x^{2}-3 x+7$ at $x=-1$ and $x=2$ are given by

$$
f(-1)=8 \times(-1)^{2}-3 \times(-1)+7=8+3+7=18
$$

and, $f(2)=8 \times(2)^{2}-3 \times 2+7=32-6+7=33$
Zero or Root A real number α is a root or zero of a polynomial

$$
\begin{aligned}
& \quad f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots .+a_{1} x+a_{0} \text {, if } f(\alpha)=0 \\
& \text { i.e., } \quad a_{n} \alpha^{n}+a_{n-1} \alpha^{n-1}+a_{n-2} \alpha^{n-2}+\ldots .+a_{1} \alpha+a_{0}=0
\end{aligned}
$$

We observe that
$x=2$ is a root of the polynomial $f(x)=x^{3}-6 x^{2}+11 x-6$, because

$$
f(2)=2^{3}-6 \times 2^{2}+11 \times 2-6=8-24+22-6=0
$$

$x=-1$ is not a root of this polynomial, because

$$
f(-1)=(-1)^{3}-6 \times(-1)^{2}+11 \times-1-6=-1-6-11-6=-24 \neq 0
$$

