MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 22. Coordinate Geometry

01. Distance Formulae

The distance between any two points in the plane is the length of the line segment joining them.
Result The distance between two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is given by

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

i.e. $\quad P Q=\sqrt{(\text { Difference of abscissae })^{2}+(\text { Difference of ordinates })^{2}}$

Solution Let $X^{\prime} O X$ and $Y^{\prime} O Y$ be the coordinate axes. Let $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ be two given points in the plane. Draw $P L$ and $Q M$ perpendicular from P and Q on x-axis. From P draw $P N$ perpendicular to $Q M$. Then,

$O L=x_{1}, O M=x_{2}, P L=y_{1}$ and $Q M=y_{2}$
$\therefore \quad P N=L M=O M-O L=x_{2}-x_{1}$
and, $Q N=Q M-N M=Q M-P L=y_{2}-y_{1}$
Clearly, $\triangle P N Q$ is a right triangle right angled at N. Therefore, by Pythogoras theorem, we have
$P Q^{2}=P N^{2}+Q N^{2}$
$\Rightarrow \quad P Q^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
Hence, distance between any two points is given by
$\sqrt{(\text { Difference of abscissae })^{2}+(\text { Difference of ordinates })^{2}}$

Example Show that the points $(1,7),(4,2), C(-1,-1)$ and $(-4,4)$ are the vertices of a square.
Solution Let $A(1,7), B(4,2), C(-1,-1)$ and $D(-4,4)$ be the given points. One way of showing that $A B C D$ is a square is to use the property that all its sides should be equal and both its digonals should also be equal. Now,

$$
\begin{aligned}
& A B=\sqrt{(1-4)^{2}+(7-2)^{2}}=\sqrt{9+25}=\sqrt{34} \\
& B C=\sqrt{(4+1)^{2}+(2+1)^{2}}=\sqrt{25+9}=\sqrt{34} \\
& C D=\sqrt{(-1+4)^{2}+(-1-4)^{2}}=\sqrt{9+25}=\sqrt{34} \\
& D A=\sqrt{(1+4)^{2}+(7-4)^{2}}=\sqrt{25+9}=\sqrt{34} \\
& A C=\sqrt{(1+1)^{2}+(7+1)^{2}}=\sqrt{4+64}=\sqrt{68} \\
& B D=\sqrt{(4+4)^{2}+(2-4)^{2}}=\sqrt{64+4}=\sqrt{68}
\end{aligned}
$$

Since, $A B=B C=C D=D A$ and $A C=B D$, all the four sides of the quadrilateral $A B C D$ are equal and its diagonals $A C$ and $B D$ are also equal. Therefore, $A B C D$ is a square.

NOTE

I

If O is the origin and $P(x, y)$ is any point, then form the above formula, we have $O P=\sqrt{(x-0)^{2}+(y-0)^{2}}=\sqrt{x^{2}+y^{2}}$

02. Section Formulae

Let A and B be two point in the plane of the paper as shown in Figure-I and P be a point on the segment joining A and B such that $A P: B P=m: n$. Then, we say that the point P divides segment $A B$ internally in the ratio $m: n$.

Figure
Example In what ratio does the point $(-4,6)$ divide the line segment joining the points $A(-6,10)$ and $B(3,-8)$?
Solution Let $(-4,6)$ divide $A B$ internally in the ratio $m_{1}: m_{2}$. Using the section formula, we get

$$
(-4,6)=\left(\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}, \frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}\right)
$$

Recall that if $(x, y)=(a, b)$ then $x=a$ and $y=b$.
So, $\quad-4=\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}$ and $6=\frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}}$
Now, $\quad-4=\frac{3 m_{1}-6 m_{2}}{m_{1}+m_{2}}$ gives us

$$
-4 m_{1}-4 m_{2}=3 m_{1}-6 m_{2}
$$

i.e., $\quad 7 m_{1}=2 m_{2}$
i.e., $\quad m_{1}: m_{2}=2: 7$

You should verify that the ratio satisfies the y-coordinate also.
Now, $\quad \begin{aligned} \frac{-8 m_{1}+10 m_{2}}{m_{1}+m_{2}} & =\frac{-8 \frac{m_{1}}{m_{2}}+10}{\frac{m_{1}}{m_{2}}+1} \\ & =\frac{-8 \times \frac{2}{7}+10}{\frac{2}{7}+1}=6\end{aligned}$
(Dividing throughout by m_{2})

Therefore, the point $(-4,6)$ divides the line segment joining the points $\mathrm{A}(-6,10)$ and $\mathrm{B}(3,-8)$ in the ratio $2: 7$.

If P is a point on $A B$ produced such that $A P: B P=m: n$, then point P is said to divide $A B$ externally in the ratio $m: n$.

Figure

In this section, we shall develop a formula, generally known as section formula, for finding the coordinates of P when we are given the coordinates of A and B and the ratio in which P divides $A B$ internally.

Result I Prove that the coordinates of the point which divides the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ internally in the ratio $m: n$ are given by

$$
\left(x=\frac{m x_{2}+n x_{1}}{m+n}, y \frac{m y_{2}+n y_{1}}{m+n}\right)
$$

Proof Let O be the origin and let $O X$ and $O Y$ be the x-axis and y-axis respectively. Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be the given points. Let (x, y) be the coordinates of the point P which divides $A B$ internally in the ratio $m: n$. Draw $A L \perp O X, B M \perp O X$, $P N \perp O X$. Also, draw $A H$ and $P K$ perpendiculars from A and P on $P N$ and $B M$ respectively. Then,

