CLASS NOTES FOR CBSE

Chapter 22. Coordinate Geometry

01. Distance Formulae

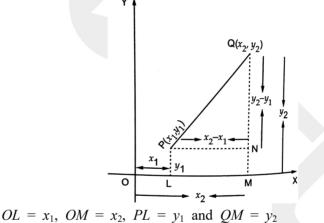
The distance between any two points in the plane is the length of the line segment joining them.

Result The distance between two points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

i.e. $PQ = \sqrt{(\text{Difference of abscissae})^2 + (\text{Difference of ordinates})^2}$

Solution Let X'OX and Y'OY be the coordinate axes. Let $P(x_1, y_1)$ and $Q(x_2, y_2)$ be two given points in the plane. Draw PL and QM perpendicular from P and Q on x-axis. From P draw PN perpendicular to QM. Then,



 $\therefore PN = LM = OM - OL = x_2 - x_1$

and, $QN = QM - NM = QM - PL = y_2 - y_1$

Clearly, ΔPNQ is a right triangle right angled at N. Therefore, by Pythogoras theorem, we have

$$PQ^2 = PN^2 + QN^2$$

 \Rightarrow

$$PQ^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

Hence, distance between any two points is given by

 $\sqrt{(\text{Difference of abscissae})^2 + (\text{Difference of ordinates})^2}$

- **Example** Show that the points (1, 7), (4, 2), C(-1, -1) and (-4, 4) are the vertices of a square.
- **Solution** Let A(1, 7), B(4, 2), C(-1, -1) and D(-4, 4) be the given points. One way of showing that *ABCD* is a square is to use the property that all its sides should be equal and both its digonals should also be equal. Now,

MISOSTUDY.COM

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

$$AB = \sqrt{(1-4)^2 + (7-2)^2} = \sqrt{9+25} = \sqrt{34}$$

$$BC = \sqrt{(4+1)^2 + (2+1)^2} = \sqrt{25+9} = \sqrt{34}$$

$$CD = \sqrt{(-1+4)^2 + (-1-4)^2} = \sqrt{9+25} = \sqrt{34}$$

$$DA = \sqrt{(1+4)^2 + (7-4)^2} = \sqrt{25+9} = \sqrt{34}$$

$$AC = \sqrt{(1+1)^2 + (7+1)^2} = \sqrt{4+64} = \sqrt{68}$$

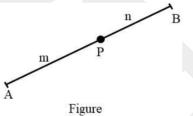
$$BD = \sqrt{(4+4)^2 + (2-4)^2} = \sqrt{64+4} = \sqrt{68}$$

Since, AB = BC = CD = DA and AC = BD, all the four sides of the quadrilateral ABCD are equal and its diagonals AC and BD are also equal. Therefore, ABCD is a square.

NOTE If O is the origin and
$$P(x, y)$$
 is any point, then form the above formula, we have
 $OP = \sqrt{(x-0)^2 + (y-0)^2} = \sqrt{x^2 + y^2}$

02. Section Formulae

Let A and B be two point in the plane of the paper as shown in Figure-I and P be a point on the segment joining A and B such that AP : BP = m : n. Then, we say that the point P divides segment AB internally in the ratio m : n.



- Example In what ratio does the point (-4, 6) divide the line segment joining the points A(-6, 10) and B(3, -8)?
- Let (-4, 6) divide AB internally in the ratio $m_1 : m_2$. Using the section formula, Solution we get

$$(-4, 6) = \left(\frac{3m_1 - 6m_2}{m_1 + m_2}, \frac{-8m_1 + 10m_2}{m_1 + m_2}\right)$$

Recall that if (x, y) = (a, b) then x = a and y = aC 0

So,
$$-4 = \frac{3m_1 - 6m_2}{m_1 + m_2}$$
 and $6 = \frac{-8m_1 + 10m_2}{m_1 + m_2}$
Now, $-4 = \frac{3m_1 - 6m_2}{m_1 + m_2}$ gives us

Now,

$$m_1 + m_2 = 3m_1 - 6m_2$$

i.e.,
$$7m_1 = 2m_2$$

i.e.,
$$m_1 : m_2 = 2 : 7$$

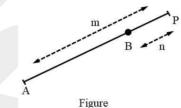
MISOSTUDY.COM The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804 You should verify that the ratio satisfies the y-coordinate also.

Now,

$$\frac{-8m_1 + 10m_2}{m_1 + m_2} = \frac{-8\frac{m_1}{m_2} + 10}{\frac{m_1}{m_2} + 1}$$
 (Dividing throughout by m_2)
$$= \frac{-8 \times \frac{2}{7} + 10}{\frac{2}{7} + 1} = 6$$

Therefore, the point (-4, 6) divides the line segment joining the points A(-6, 10) and B(3, -8) in the ratio 2 : 7.

If P is a point on AB produced such that AP : BP = m : n, then point P is said to divide AB externally in the ratio m : n.



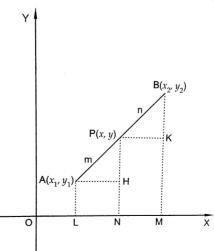
In this section, we shall develop a formula, generally known as section formula, for finding the coordinates of P when we are given the coordinates of A and B and the ratio in which P divides AB internally.

Result I Prove that the coordinates of the point which divides the line segment joining the points (x_1, y_1) and (x_2, y_2) internally in the ratio m : n are given by

 $\left(x = \frac{mx_2 + nx_1}{m+n}, y \frac{my_2 + ny_1}{m+n}\right)$

MISOSTUDY.COM

Proof Let O be the origin and let OX and OY be the x-axis and y-axis respectively. Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be the given points. Let (x, y) be the coordinates of the point P which divides AB internally in the ratio m : n. Draw $AL \perp OX$, $BM \perp OX$, $PN \perp OX$. Also, draw AH and PK perpendiculars from A and P on PN and BM respectively. Then,





The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804