CLASS NOTES FOR CBSE

Chapter 23. Introduction to Trigonometry

01. Trigonometric Ratios

Consider an acute angle $\angle YAX = \theta$ with initial side AX and terminal side AY. Let P be any point on the terminal side AY. Draw PM perpendicular from P on AX to get the right angled triangle AMP in which $\angle PAM = \theta$.

In right angled triangle AMP, Base = AM = x, Perpendicular = PM = y, and Hypotenuse = AP = r.

We define the following six trigonometric ratios :

(i)
$$\sin \theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{\text{y}}{\text{r}}$$
, and is written as $\sin \theta$

(ii)
$$\operatorname{Cosin} \theta = \frac{\operatorname{Base}}{\operatorname{Hypotenuse}} = \frac{x}{r}$$
, and is written as $\cos\theta$

(iii) Tangent
$$\theta = \frac{\text{Perpendicular}}{\text{Base}} = \frac{y}{x}$$
, and is written as $\tan \theta$

(iv) Cosecant
$$\theta = \frac{\text{hypotenuse}}{\text{Perpendicular}} = \frac{r}{y}$$
, and is written as $\text{cossec}\theta$

(v) Secant
$$\theta = \frac{\text{Hypotenuse}}{\text{Base}} = \frac{r}{x}$$
, and is written as $\sec \theta$

(vi) Cotangent
$$\theta = \frac{\text{Base}}{\text{Perpendicular}} = \frac{x}{y}$$
, and is written as $\cot \theta$

Remark : It is clear from the definitions of the trigonometric ratios that for any acute angle θ . we have

(i)
$$\operatorname{cosec} \theta = \frac{1}{\sin \theta} \operatorname{or}, \ \sin \theta = \frac{1}{\operatorname{cosec} \theta}$$

(ii)
$$\sec \theta = \frac{1}{\cos \theta}$$
 or, $\cos \theta = \frac{1}{\sec \theta}$

(iii)
$$\cot \theta = \frac{1}{\tan \theta}$$
 or, $\tan \theta = \frac{1}{\cot \theta}$

(iv)
$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$

(v) $\tan\theta \cdot \cot\theta = 1$

MISOSTUDY.COM

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

Example : In $a \triangle ABC$, right angled at B, if AB = 12 and BC = 5. find:

- (i) sin A and tan A
- (ii) $\cos C$ and $\cot C$

Solution : By pythagoras theorem, we have

02. Trigonometric Ratios of Some Specific Angles

Trigonometric Ratios of 0° and 90° :

Let $\angle XAY = \theta$ be an acute angle and let P be a point on its terminal side AY. Draw perpendicular PM from P on AX.

In $\triangle AMP$, we have

$$\sin \theta = \frac{PM}{AP}, \ \cos \theta = \frac{AM}{AP} \ \text{and} \ \tan \theta = \frac{PM}{AM}$$

It is evident from $\triangle AMP$ that as θ becomes smaller and smaller, line segment PM also becomes smaller and smaller; and finally when θ becomes 0° ; the point P will coincide with M. Consequently, we have

PM = 0 and AP = AM

$$\therefore \qquad \sin 0^{\circ} = \frac{PM}{AP} = \frac{0}{AP} = 0, \quad \cos 0^{\circ} = \frac{AM}{AP} = \frac{AP}{AP} = 1$$

MISOSTUDY.COM

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804