MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 03. Coordinate Geometry

01. Cartesian Coordinate Axes

Cartesian Coordinate Axes Let $X^{\prime} O X$ and $Y^{\prime} O Y$ be two mutually perpendicular lines through a point O in the plane of a graph paper as shown in Figure. The line $X^{\prime} O X$ is called the x-axis or axis of x the line $Y^{\prime} O Y$ is known as the y-axis or axis of y, and the two lines X^{\prime} $O X$ and $Y^{\prime} O Y$ taken together are called the coordinate axes or the axes of coordinates. The point O is called the origin.

Quadrants In Figure, the coordinate axes $X^{\prime} O X$ and $Y^{\prime} O Y$ divide the plane of the graph paper into four regions $X O Y, X^{\prime} O Y, X^{\prime} O Y^{\prime}$ and $Y^{\prime} O Y$ these four regions are called the quadrants. The regions $X O Y, X^{\prime} O Y, X^{\prime} O Y^{\prime}$ and $Y^{\prime} O X$ are known as the first, the second, the third and the fourth quadrants respectively.

Cartesian Coordinates of A Point Let $X^{\prime} O X$ and $Y^{\prime} O Y$ be the coordinate axes and let P be any point in the plane of the paper. Draw $P M \perp X^{\prime} O X$ and $P N \perp Y^{\prime} O Y$.
The length of the line segment $O M$ is called the x-coordinate or abscissa of point P and the length of the directed line segment $O N$ is called the y-coordinate or ordinate of point P. If $O M=3$ units and $O N=5$ units, then the x-coordinate or abscissa of point P is 3 and the y-coordinate or ordinate of P is 5 and we say that the coordinates of P are $(3,5)$. Note that $(3,5)$ is an ordered pair in which the positions of 3 and 5 cannot be interchanged.

Thus, for a given point P, the abscissa and ordinate are the distances of the point P from y-axis and x-axis respectively.
If we take a point on x-axis, then clearly the distance of this point from x-axis is 0 and therefore the ordinate of this point is 0 .
Thus, the ordinate or y-coordinate of every point on x-axis is 0 and the coordinates of a point on x-axis are of the form $(x, 0)$.
Similarly, if we take a point on y-axis, then its distance from y-axis is 0 and therefore, the x-coordinate or abscissa of this point is 0 .
Thus, the abscissa or x-coordinate of every point on y-axis is zero and the coordinates of a point on y-axis are of the form $(0, y)$.
The coordinate of the origin are taken as $(0,0)$.
Convention of Signs Let $X^{\prime} O X$ and $Y^{\prime} O Y$ be the coordinate axes. The ray $O X$ is taken as positive x-axis, $O X^{\prime}$ as negative x-axis, $O Y$ as positive y-axis and $O Y^{\prime}$ as negative y-axis. This means that any distance measure along $O X$ will be taken as positive and the distance moved along $O X^{\prime}$ will be negative. Similarly, the distance moved along or parallel to $O Y$ will be taken as positive and the distance along $O Y^{\prime}$ will be negative.
In view of the above sign convention, we find that:
$\begin{array}{ll}\text { In I quadrant } & : x>0, y>0 \\ \text { In II quadrant } & : x<0, y>0 \\ \text { In III quadrant } & : x<0, y<0 \\ \text { In IV quadrant } & : x>0, y<0 .\end{array}$

Example In which quadrant do the following points lie?
(i) $(4,2)$
(ii) $(-3,5)$
(iii) $(-2,-5)$
(iv) $(4,-2)$.

Solution (i) In the point $(4,2)$ abscissa and ordinate both are positive, so it lies in the first quadrant.
(ii) In the point $(-3,5)$ abscissa is negative and ordinate is positve, So, it lies in the second quadrant.
(iii) The point $(-2,-5)$ lies in the third quadrant.
(iv) The point $(4,-2)$ lies in the fourth quadrant.

02. Plotting of Points

In order to plot the points in a plane, we may sue the following algorithm:

Algorithm

Step I Draw two mutually perpendicular lines on the graph paper, one horizontal and other vertical.
Step II Mark their intersection point as O (origin). The horizontal line as $X^{\prime} O X$ and the vertical line as $Y^{\prime} O Y$. The line $X^{\prime} O X$ is the x-axis and the line $Y^{\prime} O Y$ as the y-axis.
Step III Choose a suitable scale on x-axis and y-axis and mark the points on both the axes.
Step IV Obtain the coordinates of the point which is to be plotted. Let the point be $P(a, b)$. To plot this point, start from the origin and move ' $|a|$ ' units along $O X$ or $O X^{\prime}$ according as ' a ' is positive or negative. Suppose we arrive at point M. From point M move vertically upward or downward through $|b|$ units according as b is positive or negative. The point where we arrive finally is the required point $P(a, b)$.

Example Plot the following points on a graph paper:
(i) $(3,4)$
(ii) $(-2,3)$
(iii) $(-5,-2)$
(iv) $(4,-3)$.

Solution Let $X^{\prime} O X$ and $Y^{\prime} O Y$ be the coordinate axes. Then the given four points may be plotted as given below:

