MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 07. Triangles

01. Congruence of Triangles

Two triangles are congruent if and only if one of them can be made to superpose on the other, so as to cover it exactly.
\therefore Two triangles are congruent if and only if there axists a correspondence between their vertices such that the corresponding sides and the corresponding angles of the two triangles are equal or congruent.
If $\triangle A B C$ is congruent to $\triangle D E F$ and the correspondence $A B C \leftrightarrow D E F$ makes the six pairs of corresponding parts of the two triangles congruent, then we write

$$
\triangle A B C \cong \triangle D E F
$$

Thus, $\triangle A B C \cong \triangle D E F$ if and only if $A B=D E, B C=E F, C A=F D, \angle A=\angle D, \angle B=$ $\angle E$ and $\angle C=\angle F$.
NOTE 1 In the subsequent discussion the order of the letters in the names of two triangles will indicate the correspondence between the vertices of two triangles. For Example, $\triangle A B C \cong \triangle D E F$ will indicate the correspondence $A B C \leftrightarrow D E F$ and $\triangle A B C \cong$ $\triangle D F E$ will indicate the correspondence $A B C \leftrightarrow D E F$. Thus, we can easily infer the six equalities between the corresponding parts of two triangles from the notation $\triangle A B C \cong \triangle D E F$. We shall use the abbreviation "c.p.c.t" to indicate corresponding parts of congruent triangles.
NOTE 2 Note that $\triangle P Q R \cong \triangle V W$ will mean that

$$
\angle P=\angle U, \angle Q=\angle V, \angle R=\angle W, P Q=U V, Q R=V W \text { and } P R=U W
$$

(i) Congruence Relation :

From the definition of congruence of two triangles, we obtain the following results :
(a) Every triangle is congruent to itself i.e., $\triangle A B C \cong \triangle A B C$
(b) If $\triangle A B C \cong \triangle D E F$, then $\triangle D E F \cong \triangle A B C$
(c) If $\triangle D E F \cong \triangle A B C$, and $\triangle D E F \cong \triangle P Q R$, then $\triangle A B C \cong \triangle P Q R$

02. Sufficient Conditions (Criteria) for Congruence of Triangles

Side-Angle-Side (SAS) Congruence Criterion :

Result Two triangles are congruent if two sides and the included angle of one are equal to the corresponding sides and the include angle of the other triangle.

Given : Two triangles $A B C$ and $D E F$ such that $A B=D E, A C=D F$ and $\angle A=\angle D$

Figure

To Prove : $\triangle A B C \cong \triangle D E F$
Proof : Place $\triangle A B C$ over $\triangle D E F$ such that the side $A B$ falls on side $D E$, vertex A falls on vertex D and B on E. Since $\angle A=\angle D$. therefore, $A C$ will fall on $D F$. But $A C=D F$ and A falls on D. Therefore, C will fall on F. Therefore, $B C$ coincides with $D F$.
Now, B falls on E and C falls on F. Therefore, $B C$ coincides with $E F$.
Thus, $\triangle A B C$ when superposed on $\triangle D E F$, covers in exactly. Hence, by definition of congruence, $\triangle A B C \cong \triangle D E F$.
NOTE It shall be noted that in $S A S$ criterion the equality of included angles is very essential. If two sides and one angle (not included between the two sides) of one triangle are equal to two sides and one angle of the other triangle, then the triangles need not be congruent. So, the equal angle should be the angle included between the sides.

Result Angles opposite to two equal sides of a triangle are equal.
Given : $\triangle A B C$ in which $A B=A C$
To Prove : $\angle C=\angle B$
Construction : Draw the bisector $A D$ of $\angle A$ which meets $B C$ in D.

Figure
Proof : In $\triangle s A B D$ and $A C D$, we have

$$
\begin{array}{ll}
A B=A C & {[\text { Given }]} \\
\angle B A D=\angle C A D & {[\text { By construction }]} \\
A D=A D & {[\text { Common side }]}
\end{array}
$$

Therefore, by SAS criterion of congruence, we have

$$
\triangle A B D \cong \triangle A C D
$$

$\Rightarrow \quad \angle B=\angle C \quad$ [Corresponding parts of congruent triangles are equal]

