MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 08. Quadrilaterals

01. Quadrilateral

The word 'quad' means four and the word 'lateral' means sides. Thus, a plane figure bounded by four line segments $A B, B C, C D$ and $D A$ is called a quadrilateral and is written as quad. $A B C D$ or, $\square A B C D$. The points A, B, C, D are called its vertices. The four line segments, $A B$, $B C, C D$, and $D A$ are the four sides. and the four angles $\angle A, \angle B, \angle C$ and $\angle D$ are the four angles of quad. $A B C D$. Two line segments $A C$ and $B D$ are called the diagonals of quad. $A B C D$.

Figure

02. Angle Sum Property of a Quadrilateral

Result The sum of the four angles of a quadrilateral is 360°.
Given : Quadrilateral $A B C D$
To Prove : $\angle A+\angle B+\angle C+\angle D=360^{\circ}$
Construction : Join $A C$

Figure

Proof : In $\triangle A B C$, we have

$$
\begin{equation*}
\angle 1+\angle 4+\angle 6=180^{\circ} \tag{i}
\end{equation*}
$$

In $\triangle A C D$, we have

$$
\begin{equation*}
\angle 2+\angle 3+\angle 5=180^{\circ} \tag{i}
\end{equation*}
$$

Adding (i) and (ii), we get

```
    \((\angle 1+\angle 2)+(\angle 3+\angle 4)+\angle 5+\angle 6=180^{\circ}+180^{\circ}\)
\(\Rightarrow \quad \angle A+\angle C+\angle D+\angle B=360^{\circ}\)
\(\Rightarrow \quad \angle A+\angle B+\angle C+\angle D=360^{\circ}\)
```


03. Properties of a Parallelogram

Result A diagonal of parallelogram divides it into two congurent triangles.
Given : A parallelogram $A B C D$.
To Prove : A diagonal, say, $A C$, of parallelogram $A B C D$ divides it into congruent triangles $A B C$ and $C D A$ i.e.
$\triangle A B C \cong \triangle C D A$
Construction : Join $A C$.

Figure

Proof : Since $A B C D$ is a parallelogram. Therefore,
$A B \| D C$ and $A D \| B C$
Now, $A D \| B C$ and transversal $A C$ intersects them at A and C respectively.
$\therefore \quad \angle D A C=\angle B C A$
[Alternate interior angles] ...(i)
Again, $A B \| D C$ and trasversal $A C$ intersects them at A and C respectively. Therefore,
$\angle B A C=\angle D C A$
Now, in $\triangle s A B C$ and $C D A$, we have

$$
\begin{aligned}
& \angle B C A=\angle D A C \\
& A C=A C \\
& \angle B A C=\angle D C A
\end{aligned}
$$

[Alternate interior angles] ...(ii)
[From (i)]
[Common side]
[From (i)]

So, by $A S A$ congruence criterion, we obtain
$\triangle A B C \cong \triangle C D A$

