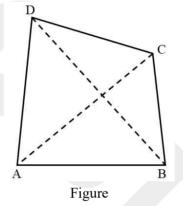
CLASS NOTES FOR CBSE

Chapter 08. Quadrilaterals

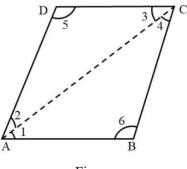
01. Quadrilateral

The word 'quad' means four and the word 'lateral' means sides. Thus, a plane figure bounded by four line segments *AB*, *BC*, *CD* and *DA* is called a quadrilateral and is written as quad. *ABCD* or, $\Box ABCD$. The points *A*, *B*, *C*, *D* are called its vertices. The four line segments, *AB*, *BC*, *CD*, and *DA* are the four sides. and the four angles $\angle A$, $\angle B$, $\angle C$ and $\angle D$ are the four angles of quad. *ABCD*. Two line segments *AC* and *BD* are called the diagonals of quad. *ABCD*.



02. Angle Sum Property of a Quadrilateral

<u>Result</u> The sum of the four angles of a quadrilateral is 360°. **Given** : Quadrilateral *ABCD* **To Prove** : $\angle A + \angle B + \angle C + \angle D = 360^{\circ}$ **Construction** : Join *AC*



Proof : In $\triangle ABC$, we have $\angle 1 + \angle 4 + \angle 6 = 180^{\circ}$...(i) In $\triangle ACD$, we have $\angle 2 + \angle 3 + \angle 5 = 180^{\circ}$...(i) Adding (i) and (ii), we get $(\angle 1 + \angle 2) + (\angle 3 + \angle 4) + \angle 5 + \angle 6 = 180^{\circ} + 180^{\circ}$ $\Rightarrow \qquad \angle A + \angle C + \angle D + \angle B = 360^{\circ}$ $\Rightarrow \qquad \angle A + \angle B + \angle C + \angle D = 360^{\circ}$

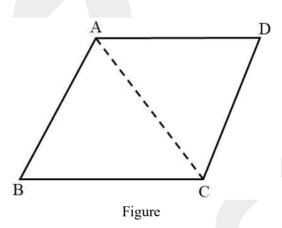
03. Properties of a Parallelogram

<u>Result</u> A diagonal of parallelogram divides it into two congurent triangles. **Given :** A parallelogram *ABCD*.

To Prove : A diagonal, say, *AC*, of parallelogram *ABCD* divides it into congruent triangles *ABC* and *CDA* i.e.

 $\Delta ABC \cong \Delta CDA$

Construction : Join AC.



Proof : Since *ABCD* is a parallelogram. Therefore, $AB \parallel DC$ and $AD \parallel BC$ Now, $AD \parallel BC$ and transversal AC intersects them at A and C respectively. [Alternate interior angles] ...(i) $\angle DAC = \angle BCA$ Again, $AB \parallel DC$ and trasversal AC intersects them at A and C respectively. Therefore, $\angle BAC = \angle DCA$ [Alternate interior angles] ...(ii) Now, in $\Delta s \ ABC$ and CDA, we have $\angle BCA = \angle DAC$ [From (i)] AC = AC[Common side] $\angle BAC = \angle DCA$ [From (i)] So, by ASA congruence criterion, we obtain $\triangle ABC \cong \triangle CDA$

MISOSTUDY.COM

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804