MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 10. Circles

01. ARC of a Circle

Definition

A continuous piece of a circle is called an arc of the circle.
Let P and Q be two points on a circle $C(O, r)$. Clearly, the circle is divided into two pieces each of which is an arc. We denote the arc from P to Q in counter clockwise direction by $\widehat{P Q}$ and the arc from Q to P in counter clockwise direction by $\widehat{Q P}$. Note that the points P and Q lie on both $\widehat{P Q}$ and $\widehat{Q P}$.

Length of an ARC

The length of an arc $\widehat{P Q}$ is the length of the fine thread which just covers the arc completely.

Figure

We denote the length of arc $\widehat{P Q}$ by $l(\widetilde{P Q})$
It follows from the above discussion that for any two points P and Q on a circle either $l(\widehat{P Q})<l(\widehat{Q P})$ or $l(\widehat{P Q})=l(\widehat{Q P})$ or $l(\widehat{P Q})>l(\widetilde{Q P})$.
If $l(\widehat{P Q})<l(\widehat{Q P})$, then $P Q$ is called the minor arc and $\widehat{Q P}$ is known as the major arc. Thus, arc $P Q$ will be minor arc or a major arc according as $l(\widehat{P Q})<l(\widehat{Q P})$ or, $l(\overparen{P Q})>l(\widetilde{Q P})$.

Central Angle

Let $C(O, r)$ be any circle. Then any angle whose vertex is O is called the central angle. $\angle P O Q$ is a central angle of the circle $C(O, r)$.

Figure

02. Chord and Segment of a Circle

Chord

A line segment joining any two points on a circle is called a chord of the circle. It should be noted that a chord is not a part of the circle.

Diameter

A chord passing through the centre of a circle is known as its diameter.

Remark Clearly, if d is diameter of the circle $C(O, r)$, then $d=2 r$. Also, it is evident that all diameters of a circle are equal.

Figure

Semi-Circle

A diameter of a circle divides it into two equal parts which are arcs. Each of these two arcs is called a semi-circle.
In above Figure, $\widehat{P Q}$ and $\widehat{Q P}$ are semi-circles. Clearly, $m(\widehat{P Q})=180^{\circ}$. Clearly, an arc whose length is less than the arc of a semi-circle is called a minor arc, otherwise it is called a major arc.
Thus, an arc $\widehat{P Q}$ is a minor arc if $m(\widehat{P Q})<180^{\circ}$ and a major arc if $m(\widehat{P Q})>180^{\circ}$

