



## IIT-JEE · NEET · CBSE eBOOKS

CLASS 11&12th



CLASS 12th
Coordination Compounds



## 01. Introduction

## Difference between coordination compound and double salt :

| Coordination compound                         | Double salt                                                                       |
|-----------------------------------------------|-----------------------------------------------------------------------------------|
| A coordination compound contains a central    | When two salts in stoichiometric                                                  |
| metal atom or ion surrounded by number of     | ration are crystallised together                                                  |
| oppositely charged ions or neutral molecules. | from their saturated solution they                                                |
| These ions or molecules re bonded to the      | are called double salts                                                           |
| metal atom or ion by a coordinate bond.       |                                                                                   |
| Example: $K_4[Fe(CN)_6]$                      | Example: FeSO <sub>4</sub> .(NH <sub>4</sub> )2SO <sub>4</sub> .6H <sub>2</sub> O |
|                                               | (Mohr's salt)                                                                     |
| They do not dissociate into simple ions       | They dissociate into simple ions                                                  |
| when dissolved in water.                      | when dissolved in water.                                                          |

**Coordination entity:** A coordination entity constitutes a central metal atom or ion bonded to a fixed number of ions or molecules.

**Example:** in  $K_4[Fe(CN)_6], [Fe(CN)_6]^4$  represents coordination entity.

**Central atom or ion:** In a coordination entity, the atom/ion to which a fixed number of ions/groups are bound in a definite geometrical arrangement around it, is called the central atom or ion. E.g.: in  $K_4[Fe(CN)_6], Fe^{2^+}$  is the central metal ion.

**Ligands:** A molecule, ion or group that is bonded to the metal atom or ion in a complex or coordination compound by a coordinate bond is called ligand. It may be neutral, positively or negatively charged.

Example: H<sub>2</sub>O, CN<sup>-</sup>, NO<sup>+</sup> etc.

**Donor atom:** An atom of the ligand attached directly to the metal is called the donor atom. For example: in the complex  $K_4[Fe(CN)_6]$ , carbon is a donor atom.

**Coordination number:** The coordination number (CN) of a metal ion in a complex can be defined as the number of ligand donor atoms to which the metal is directly bonded. For example: in the complex K4[Fe(CN)<sub>6</sub>], the coordination number of Fe is 6.

**Coordination sphere**: The central atom/ion and the ligands attached to it are enclosed in square bracket and is collectively termed as the coordination sphere. For example: in the complex  $K_4[Fe(CN)_6],[Fe(CN)_6]^4$  is the coordination sphere.

**Counter ions:** The ions present outside the coordination sphere are called counter ions. For example: in the complex  $K_4[Fe(CN)_6],K^+$  is the counter ion.

Coordination polyhedron: The spatial arrangement of the ligand atoms which are directly attached to the central atom/ ion defines a coordination polyhedron about the central atom. The most common coordination polyhedra are octahedral, square planar and tetrahedral.

For example:  $[PtCl_4]^{2-}$  is square planar,  $Ni(CO)_4$  is tetrahedral while  $[Cu(NH_3)_6]^{3+}$  is octahedral.

Charge on the complex ion: The charge on the complex ion is equal to the algebraic sum of the charges on all the ligands coordinated to the central metal ion.

Denticity: The number of ligating (linking) atoms present in ligand is called denticity.

**Unidentate ligands:** The ligands whose only one donor atom is bonded to metal atom are called unidentate ligands. Example: H<sub>2</sub>O,NH<sub>3</sub>,CO,CN<sup>-</sup>

**Didentate ligands :** The ligands which contain two donor atoms or ions through which they are bonded to the metal ion. For example: ethylene diamine  $(H_2NCH_2CH_2NH_2)$  has two nitrogen atoms, oxalate ion  $\begin{pmatrix} COO^-\\ COO^- \end{pmatrix}$  has two oxygen atoms which can bind with the metal

atom.

**Polydentate ligand :** When several donor atoms are present in a single ligand, the ligand is called polydentate ligand. For example: in N(CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>)<sub>3</sub>, the ligand is said to be polydentate. Ethylenediaminetetraacetate ion (EDTA<sup>4-</sup>) is an important hexadentate ligand. It can bind through two nitrogen and four oxygen atoms to a central metal ion.

Chelate: An inorganic metal complex in which there is a close ring of atoms caused by attachment of a ligand to a metal atom at two points. An example is the complex ion formed between ethylene diamine and cupric ion, [Cu(NH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>)<sub>2</sub>].

**Ambidentate ligand :** Ligands which can ligate (link) through two different atoms present in it are called ambidentate ligand. Example: NO-2 and SCN-, NO-2 can link through N as well as O while SCN- can link through S as well as N atom.

## 02. Werner's coordination theory

Werner was able to explain the nature of bonding in complexes. The postulates of Werner's theory are :

(i) Metal shows two different kinds of valencies: primary valence and secondary valence.

| Primary valence                              | Secondary valence                             |
|----------------------------------------------|-----------------------------------------------|
| The valence is normally ionisable.           | This valence is non-ionisable.                |
| It is equal to positive charge on            | The secondary valency equals the number of    |
| central metal atom.                          | ligand atoms coordinated to the metal. It is  |
|                                              | also called coordination number of the metal. |
| These valencies are satisfied by             | It is commonly satisfied by neutral and       |
| negatively charged ions.                     | negatively charged, sometimes by positively   |
|                                              | charged ligands.                              |
| Example : in CrCl <sub>3</sub> , the primary |                                               |
| valency is three. It is equal to             |                                               |
| oxidation state of central metal ion.        |                                               |

- (ii) The ions/groups bound by secondary linkages to the metal have characteristic spatial arrangements corresponding to different coordination numbers.
- (iii) The most common geometrical shapes in coordination compounds are octahedral, square planar and tetrahedral.

**Oxidation number of central atom:** The oxidation number of the central atom in a complex is defined as the charge it would carry if all the ligands are removed along with the electron pairs that are shared with the central atom.

**Homoleptic complexes:** Those complexes in which metal or ion is coordinate bonded to only one kind of donor atoms. For example:  $[Co(NH_3)_6]^{3+}$ .

**Heteroleptic complexes :** Those complexes in which metal or ion is coordinate bonded to more than one kind of donor atoms. For example:  $[CoCl_2(NH_3)_4]^+$ ,  $[Co(NH_3)5Br]^{2+}$ .

