

IIT-JEE · NEET · CBSE eBOOKS

CLASS 11&12th

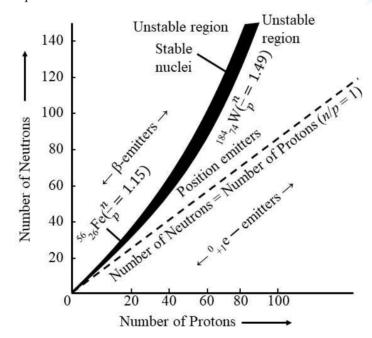
CLASS 11th

Nuclear Chemistry

01. Radioactivity

Radioactivity is a process in which nuclei of certain elements undergo spontaneous disintegration without excitation by any external means.

All those substances which have the tendency to emit these radiations are termed radioactive materials. Radioactivity is a nuclear phenomenon.


02. Analysis of Radioactive Radiations

	Property	α-rays	β-rays	γ-rays
(i)	Nature	These consist of small positively charged particles which are merely nuclei of helium atoms, each consisting of 2 protons and 2 neutrons. These are represented as ⁴ ₂ He.	These consist of negatively charged particles which have the same e/m value as the cathode rays. β -rays are merely electrons. The β -rays are represented as ${}^{0}_{-1}\beta$ or ${}^{0}_{-1}e$.	γ -rays are similar to X-rays. These are neutral in nature. They have very small wavelengths of the order of 10^{-10} to 10^{-13} m.
(ii)	Velocity	The α -rays are ejected with high velocities ranging from 1.4×10^9 to 1.7×10^9 to cm/sec. The velocity of α -rays depends upon the kind of nucleus from which they are emitted.	The β -rays are much faster than α -rays. They have generally different velocities sometimes approaching the velocity of light.	They travel with the velocity of light.
(iii)	Penetrating power	α-particles have small penetrating power due to relatively larger size. They are stopped by a piece of aluminium foil of 0.1 mm thickness.	β -rays are more penetrating than α -particles. This is due to small size and high velocity. These are stopped by a 1 cm thick sheet of aluminium.	Due to high velocity and non-material character, γ -rays are 10^{10} times more penetrating than α -rays.

(iv) Ionising power	α-particles produce	Due to low value of	γ-rays produce
	intense ionisation in	kinetic energy	minimum ionisation
	gases, Ionising power	ionising power is	or no ionisation.
	is 100 times greater	less than α-particles	
	than β-rays and	but 100 times greater	
	10,000 times greater	than γ-rays.	
	than γ-rays. This is		
	due to high kinetic		
	energy.		

03. Cause of Radioactivity

The stable nuclei lie within the shaded area which is called the **region** or **zone of stability**. All the nuclei falling outside this zone are invariably radioactive and unstable in nature. **Nuclei that fall above the stability zone have an excess of neutrons while those lying below have more protons**. Both of these cause instability. These nuclei attain stability by making adjustment in the n/p ratio.

