

IIT-JEE · NEET · CBSE eBOOKS

CLASS 11&12th

CLASS 11th

Ionic Equilibrium

Ionic Equilibrium

01. Arrhenius Concept (1887)

- (i) According to this concept all substances which give H⁺ ions, when dissolved in water are called **Acids**.
- (ii) Those which ionise in water to furnish OH ions are called **Bases**. e.g.

$$\begin{array}{ccc} & & & & \\ & & & & \\ \text{(a)} & & \text{(Acid)} & & & \\ \end{array} \quad \begin{array}{ccc} & & & & \\ & & & \\ \end{array} \quad H^+ + A^-$$

Limitations of Arrhenius concept:

- (i) Applicable only to aqueous solution. Dry HCl shall not act as an acid.
- (ii) The concept does not explain acidic or basic properties in non aqueous solvents.
- (iii) It fails to explain acidic character of no protic compound viz. SO₂,NO₂,CO₂,P₂O₅
- (iv) It fails to explain the basic nature of compounds viz. NH3, Na₂CO₃
- (v) It fails to explain the acidic nature of certain salts in water e.g. AlCl₃, FeCl₃

Basicity or protocity of an Acid:

It is the number of H⁺ ions furnished by a molecule of an acid. An acid may be classified according to its basicity. Thus we may have,

- (i) Mono basic or Mono protic acids like HCl, HNO₃CH₃COOH,HCN etc.
- (ii) Dibasic or Diprotic acids like, H₂SO₄, H₂CO₃, H₂BO₃, etc.
- (iii) Tribasic or Triprotic acids like H₃PO₄, H₃AsO₄, etc.

Acidity or Hydroxity of a Base

It may be defined as the number of OH ions furnished by a molecular of base. A base can be,

- (i) Mono acidic or monohydroxic like NaOH, NH₄OH, AgOH etc.
- (ii) Diacidic or dihydroxic like Ba(OH)2, Mg(OH)2, Ca(OH)2, Sr(OH)2 etc.
- (iii) Triacidic or trihydroxic like Fe(OH)3, Al(OH)3 etc.

Strength of Acid or Base:

(i) Strength of Acid or Base depends on the extent of its ionisation. Hence equilibrium constant K_a or K_b respectively of the following equilibria give a quantitative measure of the strength of acid or base.

(a)
$$HA \stackrel{H_2O}{\longleftarrow} H^+ + A^-$$
; $K_a = \frac{\left[H^+\right]\left[A^-\right]}{\left[HA\right]}$

(b) BOH
$$\stackrel{\text{H}_2\text{O}}{\longleftarrow}$$
 B⁺ + OH⁻ ; K_b = $\frac{\text{[B^+][OH^-]}}{\text{[BOH]}}$

(ii) The larger the value of Ka or kb, the more complete the ionisation, the higher the concentration of H_3O^+ or OH^- and stronger is the acid or base.

02. Bronsted Lowery Concept (1923)

In 1923, a more general concept of acids and bases was introduced by Bronsted & Lowery. According to Bronsted-Lowery definition

- (i) An acid is a substance that accepts a proton and
- (ii) A base is a substance that accepts a proton.
- (iii) In a typical acid- base reaction,

$$HX + B \rightleftharpoons X^- + HB^+$$

Here HX being a proton donor is an Acid and B being a proton acceptor is a Base in the forward reaction,

(iv) In the backward reaction HB^+ being a proton donor is an acid and X^- being a proton donor acceptor is a base

Classification of Bronsted-Lowery Acid & Bases:

Bronsted-Lowery acids and bases can be

- (i) Molecular
- (ii) Cationic
- (iii) Anionic

Type	Acid	Base
Molecular	HCl, HNO ₃ , HClO ₄ ,	NH ₃ , N ₂ H ₄ , Amines
	H_2SO_4 , H_3PO_4	H2O, Alocohol, Ethers
	CH ₃ COOH, HBr,	
	H ₂ O etc.	
Cationic	NH ₄ ⁺ , N ₂ H ₅ ⁺ , PH ₄ ⁺ ,	[Fe(H2O)5OH]2+
	Na ⁺ , Ba ²⁺ (All cation)	$[Al(H_2O)_5OH]^{2+}$
	$[Fe(H_2O)_6]^{3+}$	
	$[Al(H_2O)_6]^{3+}$	
Anionic	HS ⁻ , HSO ₃₋	
	H ₂ PO4 ⁻ , HSO ₄ ⁻ ,	Cl ⁻ , Br ⁻ , OH ⁻
	HCO ₃ ⁻ , HOPO ₄ ²⁻ ,	HSO ₄ CN, CO ₃ ²⁻
	all amphiprotic anions	SO ₄ ²⁻ , NH ₂ ⁻ , CH ₃ COO ⁻

Classification of Solvents:

Protonic or protic solvents:

- (i) They are characterized by the presence of transferable hydrogen and the formation of "Onium" ions. Autoionisation taking place in them.
 - (a) $H_2O + H_2O \rightleftharpoons H_3O^+ + OH^-$
 - (b) $NH_3 + NH_3 \rightleftharpoons NH_4^+ + NH_2^-$
 - (c) $3HX \Rightarrow H_2X + HX_2^-$
 - (d) $2H_2SO_4 \Rightarrow H_3SO_4^+ + HSO_4^-$