

Ha

Complete CHEMISTRY

IIT-JEE · NEET · CBSE eBOOKS CLASS 11&12th

CLASS 12th P-Block Elements

01. Nitrogen Family

- The general electronic configuration is [noble gas] ns²np³.
- (i) Atomic and Ionic radii : Covalent radius : N<P<As<Sb<Bi
- (ii) **Ionization enthalpies :** N>P>As>Sb>Bi(IE₁ values)
- (iii) Electronegativity : N>P>As>Sb=Bi
- (iv) Catenation : The group 15 elements also show catenation property but to much smaller extent than carbon. Among group 15 elements P has the maximum tendency for catenation forming cyclic as well as open chain compounds consisting of many phosphorous atoms.
- (v) Valency and oxidation number : Gen. configuration : ns^2np^3 . Valency = 3.

02. Compounds of V-A Group

Formation of Hydrides

- (i) Hydrides formed have YH₃ formula {NH₃, PH₃, AsH₃, SbH₃, BiH₃}
- (ii) NH₃ neutralises protic acids as well as aprotic acids (Lewis Acid) so ammonia is strong base.
- (iii) NH₃ will have high boiling point due to H-bond.
- (iv) Tendency of H-bonding and B.P. $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.
- (v) NH₃ cannot acts as a reducing agent and BiH₃ is strongest reducing agent.
- (vi) N_3^- is called Azide Ion \rightarrow Has 4 lone pair

e.g. $Ba^{+2}N_3^- \rightarrow Barium Azide [Ba(N_3)_2]$

03. Formation of Halides

- (i) **Tri Halides :** All possible trihalides of all these elements are known except NCl₃, NBr₃, and NI₃ Because :
 - (a) Low polarity of the N X bond.
 - (b) Weakness of N X bond due to large size difference.
- (ii) Penta Halides :
 - (a) Except N and Bi all forms pentahalides, N does not form due to absence of d-orbital Bi does not form due to inert pair effect.
 - (b) PCl₅ acts as an effective chlorinating Agent so it decomposes into PCl₅ \rightarrow PCl₃+Cl₂

e-Learning for IIT-JEE | NEET | CBSE |

04. Nitrogen (N₂)

Preparation of N₂ :

3

- (i) $(NH_4)_2 Cr_2O_7 \xrightarrow{\Delta} N_2 + 4H_2O + Cr_2O_3$
- (ii) $2NH_3 + 3NaOC1 \rightarrow N_2 + 3NaC1 + H_2O$

P-Block Elements

$$\begin{array}{cccc} Ba(N_3)_2 & & \Delta & Ba + 3N_2 \\ (iii) & 2NaN_3 & & \Delta & 2Na + 3N_2 \end{array} \end{array} Purest N_2 obtained \\ \begin{array}{cccc} Ba(N_3)_2 & & \Delta & \Delta & Da(N_2) \\ \hline Ba(N_3)_2 & & \Delta & Da(N_3) \\ \hline Ba(N_3)_2 & & Da(N_3) \\ \hline Ba(N$$

Properties of N₂ :

- (i) It is absorbed by hot metal like Ca, Mg, Al etc. $3Ca + N_2 \rightarrow Ca_3N_2$ Bright hot $2Al + N_2 \rightarrow 2AlN$ $Al_2O_3 + 3C + N_2 \xrightarrow{\Delta} 2AlN + 3CO$ $Na_2B_4O_7 + 2NH_4Cl \xrightarrow{\Delta} 2NaCl + 2NH_3 + 2B_2O_3 + H_2O$ $B_2O_3 + 2NH_3 \longrightarrow 2BN + 3H_2O$
- (ii) N_2 can be absorbed by calcium carbide at the temp around 1000°C CaC₂

$$CaC_2 + N_2 \xrightarrow{1000°C} CaNCN + C$$

cyanamide ion

It is a very good fertilizer.

Types of Nitride :

- (i) Salt like or ionic : Li_3N , Na_3N , $K_3N(?)$, Ca_3N_2 , Mg_3N_2 , Be_3N_2
- (ii) Covalent : AIN, BN, Si₃N₄, Ge₃N₄, Sn₃N₄

(iii)

Interstitial : MN (M = Sc, Ti, Zr, Hf, La)HCP or FCC

Oxides of nitrogen	Structure	Physical state	Colour of gas
N ₂ O	$\mathbf{\bar{N}} = \mathbf{\overset{+}{N}} = \mathbf{O}$	Gas	Colourless
NO	N = O or $N = O$	Gas	Colourless
N ₂ O ₃	O = N - O - N	¢	Blue liquid (-30°C)
NO ₂	$2N_{0} \rightleftharpoons 0$	Gas	Brown
N ₂ O ₅		Colourless solid	-(no existence in gas phase)

05. Oxides of Nitrogen

4