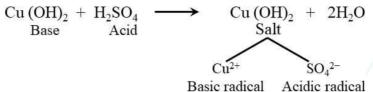


Ho

Complete CHEMISTRY

IIT-JEE · NEET · CBSE eBOOKS CLASS 11&12th



CLASS 12th Salt Analysis

01. Introduction

The positively charged part of a salt (cation) which has been derived from a base is termed basic radical and the negatively charged part of the salt (anion) which has been derived from an acid is termed acidic radical.

A mixture may have two or more salts; thus qualitative inorganic analysis consists in identifying the presence of various cations and anions in it.

02. Identification of Acidic Radicals

Group I : This group consists of radicals which are detected by dilute H_2SO_4 or dilute HCl. These are (i) carbonate, (ii) sulphite, (iii) sulphide, (iv) nitrite and (v) acetate **Group II :** This group consists or radicals which are detected by concentrated H_2SO_4 . These are (i) chloride, (ii) bromide, (iii) iodide, (iv) nitrate and (v) oxalate **Group III :** This radicals which do not give any characteristic gas with dilute and concentrated H_2SO_4 . These are (i) sulphate, (ii) phosphate, (iii) borate and (iv) fluoride.

Group I

Take 0.2 g of the substance in a test tube and add 2mL or dilute HCl or dilute H₂SO₄. Observe the reaction in cold, warm gently the contents and infer as follows :

S.NO.	Observation	Inference	Confirmatory tests
(i)	Brisk effervescence in cold with evolution of colourless and odourless gas.	CO ₃ ^{2–} (Carbonate)	Pass the gas in a test tube containing small quantity of lime water. It turns milky
(ii)	A colourless gas with suffocating odour having smell of burning sulphur.	SO ₃ ^{2–} (Sulphite)	Moisten a piece of filter paper with acidified potassium dichromate and put it on the mouth of the test tube. It turns green.
(iii)	A colourless gas with smell of rotten eggs.	S ²⁻ (Sulphide)	Moisten a piece of filter paper with lead acetate solution and place it on the mouth of the test tube. It turns black.
(iv)	A light brown gas.	NO ₂ ⁻ (Nitrite)	Pass the evolved gas through ferrous sulphate solution. It turns brown. Mix the given salt or mixture with a little or Kl and add dilute H_2SO_4 . Evolution of violet vapours. Place the piece of filter paper on the mouth of test tube moistened with solutions of starch, potassium iodide and acetic acid. It turns blue.
(v)	Colourless vapours with smell of vinegar.	CH ₃ COO ⁻ (Acetate)	To the aqueous solution of substance add neutral FeCl ₃ solution \rightarrow blood red colour. Rub the moistened salt or mixture with dry oxalic acid \rightarrow smell or vinegar.

e-Learning for IIT-JEE | NEET | CBSE | 9/10th

3

Salt Analysis

Group II

Take 0.2 g of the substance and add 2mL of concentrated H₂SO₄. warm gently, Observe the changes and draw inference as follows : Note : With concentrated H_2SO_4 , carbonates, sulphites, sulphides, nitrites and acetates also behave in the

same way as with dilute H₂SO₄.

S.NO.	Observation	Inference	Confirmatory tests
(i)	Colourless gas with pungent smell which fumes in air. [Add a pinch of MnO_2 in the solution \rightarrow pale green gas is evolved.]	Cl⁻ (Chloride)	 Bring a glass rod dipped in NH₄OH on the mouth of test tube; white fumes are formed. Bring a glass rod dipped in silver nitrate solution on the mouth of the test tube; white curdy ppt. is formed on the rod. Chromyl chloride test : To the substance in a dry test tube add three times its weight of powdered K₂Cr₂O₇ and conc. H₂SO₄. Heat the contents. Red vapours are evolved. Pass the vapours in a test tube containing NaOH solution. Now add acetic acid and lead acetate solution. A yellow precipitate appears.
(ii)	Raddish brown fumes which intensify on addition of MnO ₂ . Vapour passed in water, make it yellow.	Br [−] (Bromide)	 Take aqueous extract of the substance (or extract with dilute HNO₃) and add silver nitrate solution. A light yellow precipitate appears. To a small amount of the substance add dilute H₂SO₄. Warm and cool. Add 1 mL chloroform or carbon tetrachloride and then chlorine water with constant shaking. The chloroform layer becomes orange-brown.
(iii)	Violet pungent fumes evolved which may condense as black specks on the cooler parts of the test tube. [The violet fumes intensify on addition of MnO ₂ .]	I [−] (Iodide)	 Place a piece of filter paper moistened with starch solution on the mouth of the test tube. The paper turns blue. Take aqueous extract of the substance (or extract with dilute HNO₃) and add AgNO₃ solution. Yellow precipitate is formed which is insoluble in NH₄OH solution. To the small amount of the substance add dil. H₂SO₄. and 1 mL of either chloroform or carbon tetrachloride and then chlorine water, shake. Chloroform layer attains violet colouration.
(iv)	Light brown vapours having pungent smell. Intensify on adding copper turnings.	NO ₃ ⁻ (Nitrate)	• Take and aqueous extract of the substance in a test tube and add freshly prepared $FeSO_4$ solution. Add conc. H_2SO_4 . by the side of the test tube without disturbing the solution-a brown ring is formed at the junction of two liquids.
(v)	Colourless, odourless gas which burns with blue flame at the mouth of the test tube and turns lime water milky.	C ₂ O ₄ ^{2–} (Oxalate)	• Take the substance, add dil. H_2SO_4 and heat till there are no more effervescences. Now add MnO_2 (solid)-brisk effervescences.

4