

12

Complete CHEMISTRY

IIT-JEE · NEET · CBSE eBOOKS CLASS 11&12th

CLASS 11th Mole Concept

01. Classification of matter

Chemistry deals with the composition, structure and properties of matter. These aspects can be best described and understood in terms of basic constituents of matter: **atoms** and **molecules**. That is why chemistry is called the science of atoms and molecules.

Matter

The thing which occupy space and have mass, which can be felt by our five sense is called as matter. Matter is further classified into two categories :

- a. Physical classification
- b. Chemical classification

02. Prefixed Used With Units

The S.I. system recommends the multiples such as 10^3 , 10^6 , 10^9 etc. and fraction such as 10^{-3} , 10^{-6} , 10^{-9} etc. i.e. the powers are the multiples of 3. These are indicated by special prefixes. These along with some other fractions or multiples in common use, along with their prefixes are given below in Table and illustrated for length (m).

3

Mole Concept

Prefix	Symbol	Multiplication Factor	Example	
deci	d	10 ⁻¹	1 decimetre (dm) = 10^{-1} m	
centi	с	10 ⁻²	1 centimetre (cm) = 10^{-2} m	
milli	m	10 ⁻³	1 millimetre (mm) = 10^{-3} m	
micro	μ	10 ⁻⁶	1 micrometre (μ m) = 10 ⁻⁶ m	
nano	n	10 ⁻⁹	1 nanometre (nm) = 10^{-9} m	
pico	р	10 ⁻¹²	1 picometre (pm) = 10^{-12} m	
femto	f	10 ⁻¹⁵	1 femtometre (fm) = 10^{-15} m	
atto	a	10 ⁻¹⁸	1 attometre (am) = 10^{-18} m	
deka	da	10 ¹	1 dekametre (dam) = 10^1 m	
hecto	h	10 ²	1 hectometre (hm) = 10^2 m	
kilo	k	10 ³	1 kilometre (km) = 10^3 m	
mega	Μ	10 ⁶	1 megametre (Mm) = 10^6 m	
giga	G	10 ⁹	1 gigametre (Gm) = 10^9 m	
tera	Т	10 ¹²	1 teremetre (Tm) = 10^{12} m	
peta	Р	10 ¹⁵	1 petametre (Pm) = 10^{15} m	
exa	E	10 ¹⁸	1 exametre (Em) = 10^{18} m	

* TABLE : SOME COMMONLY USED PREFIXES WITH THE BA	TH THE BASE U	WITH T	PREFIXES	USED	COMMONLY	SOME	<i>*TABLE</i> :
--	---------------	--------	----------	------	----------	------	------------------------

As volume is very often expressed in litres, it is important to note that the equivalence in S.I. units for volume is as under: 1 litre $(1 \text{ L}) = 1 \text{ dm}^3 = 1000 \text{ cm}^3$ and 1 millilitre $(1 \text{ ml}) = 1 \text{ cm}^3 = 1 \text{ cc}$

Example Convert 2 atm into cm of Hg.

Solution 2 atm = 2×76 cm of Hg = 152 cm of Hg {1 atmosphere = 76 cm of Hg

03. Different types of masses

One mole

Avogadro's Number (N_A)= 6.023×10^{23} . It is the number of atoms present in exactly 12 g of (C¹²) isotope.

Atomic Weight (A)

Atomic weight is the relative weight of one atom of an element with respect to a standard weight.

$$A = \frac{\text{Weight of one atom of an element}}{\frac{1}{12} \text{th part by weight of an atom of (C12) isotope}}$$

amu (atomic mass unit)

1 amu = $\frac{1}{12}$ th part by weight of an atom of (C¹²) isotope = $\frac{1}{N_A}g = 1.66 \times 10^{-24}g$

Atomic weight $(A) \times amu$ =Absolute atomic weight.

e-Learning for IIT-JEE | NEET | CBSE | 9/10th
