

Ha

Complete CHEMISTRY

IIT-JEE · NEET · CBSE eBOOKS CLASS 11&12th

CLASS 11th P-Block Elements

01. Physical Properties

(i) Atomic Size

Atomic Number	Atomic Radil	Element	Metalic Character
5	85 pm	В	Non-metal
13	143 pm	Al	Metal
31	135 pm	Ga	Metal
49	167 pm	In	Metal
81	170 pm	T1	Metal

(ii) Electronegativity

Atoms	В	Al	Ga	In	T1
Electronegativity	2	1.5	1.6	1.7	1.8
			L	T T	

Due to poor shielding of 3d and 4d and lanthanoid contraction.

(iii) Ionization Energy

B > Tl > Ga > Al > In

(iv) Oxidation States

Stability of +3 oxidation state decreases down the group due to inert pair effect, as well stability of +1 oxidation state increases.

(v) Melting Point

B > Al > Tl > In > GaGa has on unused structure. It congests if only Ga₂ molecules it has, thus low melting point.

(vi) **Boiling Point** B > Al > Ga > In > Tl

NOTE Indium in +1 oxidation state is reducing agent.

(i) Reactivity towards air

3

B_2O_3	_	Acidic Oxide
AlO ₃	—	Amphoteric Oxide
Ga_2O_3		Amphoteric Oxide
In_2O_3		Basic Oxide
Tl_2O_3	_	Basic Oxide

 $4E(s) + 3O_2 (g) \xrightarrow{\Delta} 2E_2O_3(s)$

 $2E(s) + N_2 (g) \xrightarrow{\Delta} 2EN(s)$ (Where E = B, Al, Ga, In, Tl)

B₂O₃ is called boric anhydride as it is anhydride of boric acid

e-Learning for IIT-JEE | NEET | CBSE |

(ii) Reactivity towards acids

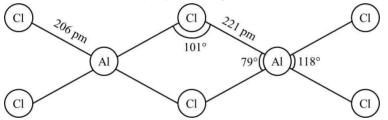
Boron is not affected by acids agents like HCl and dil. H_2SO_4 while all other elements react with conc. H_2SO_4 and HNO_3 Ga and Al develop protective layer of oxide with conc. HNO_3 .

 $\begin{array}{l} 2 \ Al(s) \ + \ 6HCl(aq) \ \rightarrow \ 2Al^{3+} \ (aq) \ 6Cl^- \ (aq) \ + \ 3H_2(g) \\ 2 \ B(s) \ + \ 3H_2SO_4(aq) \ \rightarrow \ 2H_3BO_3 \ + \ 3SO_2(g) \\ B(s) \ + \ 3HNO_3(aq) \ \rightarrow \ 3H^+ \ (aq) \ + \ BO_3^{-3} \ (aq) \ + \ 3NO_2(g) \end{array}$

(iii) Reactivity towards alkalies

Except indium and thallium all other elements react with alkali solutions

 $2M(s) + 2NaOH(aq) + 2H_2O \rightarrow 2NaMO_2 (s) + 3H_2 (g) (M = Al or Ga)$


Example, Al also reacts with aq. Alkali and liberates dihydrogen.

 $2Al(s) + 2NaOH(aq) + 6H_2O(l) \rightarrow 2Na^+ [Al(OH)_4]^- (aq) + 3H_2 (g)$ Sodium terahydroxoaluminate (III)

(iv) Reactivity towards halogens

Trihalides are formed when these elements react with halogens. All these halides exist as discrets molecular species which are sp^2 hybridised and covalently bonded. Tll₃ is unstable.

AlCl₃ achieves stability by forming a dimer.

Acidic strength is inversely proportional to back-bonding, as back-bonding decreases from BF_3 to Bl_3 as given below

 $BF_3 > BCl_3 > BBr_3 > Bl_3$

Hence, Lewis acidic strength will increase as under

 $BF_3 > BCl_3 > BBr_3 > Bl_3$

 $p\pi$ - $p\pi$ back-bonding is strongest in BF₃ because both B and F involve 2p orbital in back-bonding. Stability of halides in +3 oxidation state decreases down the group.

Anomalous Behaviour of Boron

- (i) Boron has very small atomic radii, hence greater nuclear attraction on the outermost electrons. it has very high ionisation energy. This gives boron distinctly non-metallic character while the rest are metals.
- (ii) Boron has maximum covalency of four due to non-availability of *d*-orbitals while the rest have maximum covalency of six.
- (iii) Boron alone exhibits allotropy.
- (iv) Boron shows +3 oxidation state while other can show +1 and +3 oxidation states.

Comparison of Boron and Aluminium

- (i) Same Electronic Configuration
- (ii) Same Valency
- (iii) Same Oxidation State

- 4