MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 07. Permutations \& Combinations

01. Factorial

Factorial The continued product of first n natural numbers is called the " n factorial" and is denoted by $\lfloor n$ or $n!$ i.e.
$n!=1 \times 2 \times 3 \times 4 \times \ldots \times(n-1) \times n$
$3!=1 \times 2 \times 3=6 ; 4!=1 \times 2 \times 3 \times 4=24,5!=1 \times 2 \times 3 \times 4 \times 5=120$ etc. n ! is defined for positive integers only.

Deduction We have,

$$
n!=1 \times 2 \times 3 \times 4 \ldots \times(n-1) \times n
$$

$\Rightarrow \quad n!=[1 \times 2 \times 3 \times 4 \ldots \times(n-1)] n$
$\Rightarrow \quad n!=[(n-1)!] n=n \times(n-1)!$
Thus, $n!=n \times(n-1)!$
For example, $8!=8(7!), 5!=5(4!)$ and $2!=2(1!)$

02. Fundamental Principles of Counting

Fundamental Principle of Multiplication If there are two jobs such that one of them can be completed in m ways, and when it has been completed in any one of these m ways, second job can be completed in n ways; then the jobs in succession can be completed in $m \times n$ ways.
Example I In a class there are 10 boys and 8 girls. The teacher wants to select a boy and a girl to represent the class in a function. In how many ways can the teacher make this selection?
Solution Here the teacher is to perform two jobs:
(i) Selecting a boy among 10 boys, and
(ii) Selecting a girl among 8 girls.

The first of these can be performed in 10 ways and the second in 8 ways. Therefore by the fundamental principle of multiplication, the required number of ways is $10 \times 8=80$.

Remark The above principle can be extended for any finite number of jobs as stated below: If there are n jobs $J_{1}, J_{2}, \ldots J_{n}$ such that job J_{i} can be performed independently in m_{i} ways in which all the jobs can be performed is $m_{1} \times m_{2} \times m_{3} \times \ldots \times m_{n}$.

Fundamental Principle of Addition If there are two jobs such that they can be performed independently in m and n ways respectively, then either of the two jobs can be performed in $(m+n)$ ways.
Example II In a class there are 10 boys and 8 girls. The teacher wants to select either a boy or a girl to represent the class in a function. In how many ways the teacher can make this selection?
Solution Here the teacher is to perform either of the following two jobs:
(i) Selecting a boy among 10 boys. or
(ii) Selecting a girl among 8 girls.

The first of these can be performed in 10 ways and the second in 8 ways. Therefore, by fundamental principle of addition either of the two jobs can be performed in $(10+8)=18$ ways. Hence, the teacher can make the selection of either a boy or a girl in 18 ways.

03. Some Useful Symbols

If n is a natural number and r is a positive integer satisfying $0 \leq r \leq n$, then the natural number $\frac{n!}{(n-r)!}$ is denoted by the symbol ${ }^{n} P_{r}$ or, $P(n, r)$.
i.e., ${ }^{n} P_{r}=P(n, r)=\frac{n!}{(n-r)!}$

If n is a natural number and r is a positive integer satisfying $0 \leq r \leq n$, then the natural number $\frac{n!}{(n-r)!r!}$ is denoted by the symbol ${ }^{n} C_{r}$, or, $C(n, r)$. Thus,

$$
{ }^{n} C_{r}=C(n, r)=\frac{n!}{(n-r)!r!}
$$

Property I $\quad{ }^{n} C_{r}={ }^{n} C_{n-r}$, for $0 \leq r \leq n$.

Remark The above property can be restated as follow:
If x and y are non-negative integers such that ${ }^{n} C_{x}={ }^{n} C_{y}$, then $x=y$ or, $x+y=n$.

Property II Let n and r be non-negative integers such that $1 \leq r \leq n$.
Then, ${ }^{n} C_{r}=\frac{n}{r} \cdot{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}{ }^{n} C_{r-1}={ }^{n+1} C_{r}$
Property III Let n and r be non-negative integers such that $1 \leq r \leq n$.
Then, ${ }^{n} C_{r}=\frac{n}{r} \cdot{ }^{n-1} C_{r-1}$
Property IV If $1 \leq r \leq n$, then $n .{ }^{n-1} C_{r-1}=(n-r+1)^{n} C_{r-1}$
Property V If n is even, then the greatest value of ${ }^{n} C_{r}(0 \leq r \leq n)$ is ${ }^{n} C_{n / 2}$.

Property VI If n is odd, then the greatest value of ${ }^{n} C_{r}(0 \leq r \leq n)$ is $\frac{{ }^{n} C_{n+1}}{2}$ or, $\frac{{ }^{n} C_{n-1}}{2}$

