CLASS NOTES FOR CBSE

Chapter 14. Stastics

01. Mean Deviation

- I. Mean Deviation For Ungrouped Data or Individual Observations
 - If $x_1, x_2, ..., x_n$ are *n* values of a variable *X*, then the mean deviation from an average. A (median or Arithmetic Mean) is given by

$$M.D. = \frac{1}{n} \sum_{i=1}^{n} |x_1 - A| = \frac{1}{n} \Sigma |d_i|, where \ d_i = x_i - A$$

We may use the following algorithm to find mean deviation of individual observations:

Algorithm

- **Step I** Compute the central value or average 'A' about which mean deviation is to be calculated.
- **Step II** Take deviations of the observations about the central value 'A' obtained in Step I ignoring \pm sings and denote these deviations by $|d_i|$.
- **Step III** Obtain the total of these deviations i.e. $\sum_{i=1}^{n} |d_i|$.
- Step IV Divide the total obtained in step III by the number of observations.
- Example 1 Find the mean deviation from the mean for the following data : 6, 7, 10, 12, 13, 4, 8, 20
- Solution Let \overline{X} be the mean of the given data. Then, $\overline{X} = \frac{6+7+10+12+13+4+8+20}{8} = 10$

Compounds of Mean Deviation					
	x_i	$ d_i = x_i - \overline{X} = x_i - 10 $			
	6	4			
	7	3			
	10	0			
	12	2			
	13	3			
	4	6			
	8	2			
	20	10			
	Total	$\sum d_i = 30$			
We have, $\sum d_i = 30$ and $n = 8$					
	M.D. = -	$\frac{1}{n} \sum d_i = \frac{30}{8} = 3.75$			

MISOSTUDY.COM The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804 Example 2 Calcualte the mean deviation about median from the following data : 340, 150, 210, 240, 300, 310, 320.

Solution Arranging the observations in ascending order of magnitude, we have 150, 210, 240, 300, 310, 320, 340.

Clearly, the middle observation is 300. So, medina = 300.

	Calculation	n of Mean Deviation	
	x_i	$ d_i = x_i - 300 $	
	340	40	
	150	150	
	210	90	
	240	60	
	300	0	
	310	10	
	320	20	
	Total	$d_i = \sum x_i - 300 = 370$	
Ì	$M.D. = \frac{1}{n} \sum d_i $	$=\frac{1}{7} \sum x_i - 300 = \frac{370}{7} =$	= 52.8

II. Mean Deviation of A Discrete Frequency Distribution

If x_i/f_i ; i = 1, 2, ..., n is the frequency distribution, then mean deviation from an average A (median or Arithmetic Mean) is given by

$$M.D. = \frac{1}{N} \sum_{i=1}^{n} f_i |x_1 - A|, where \sum_{i=1}^{n} f_i = N$$

We may use the following algorithm to find the mean deviation of a discrete frequency distribution.

Algorithm

Ŀ.

- **Step I** Calculate the central value or average 'A' of the given frequency distribution about which mean deviation is to be calculated.
- **Step II** Take deviations of the observations from the central value in step I ignoring sings and denote them by $|d_i|$.
- **Step III** Multiply these deviations by respective frequencies and obtain the total $\sum_{i=1}^{n} f_i |d_i|$.
- **Step IV** Divide the total obtained in step III by the number of observations i.e. $N = \sum_{i=1}^{n} f_i$ to obtain the mean deviation.

	x_i :	3	9	17	23	27	
	f_i :	8	10	12	9	5	
Solution	Calculatio	on of mean	deviation	about mean.			
	X_i	f_i		$f_i x_i$	$ x_i - 15 $	$f_i x_i - 15 $	
	3	8		24	12	96	
	9	10		90	6	60	
	17	12		204	2	24	
	23	9		207	8	72	
	27	5		135	12	60	
		$N = \sum f_i =$	44 <i>N</i> =	$\sum f_i x_i = 660$		$\sum f_i x_i - 15 = 312$	
Mean = $\overline{X} = \frac{1}{N} (\sum f_i x_i) = \frac{660}{44} = 15$							
Mean deviation = $M.D. = \frac{1}{N} \sum f_i x_i - 15 = \frac{312}{44} = 7.09$							

Example 1 Calculate the mean deviation about mean from the following data :

Example 2 Calculate the mean deviation from the median for the following distribution:

x_i :	10	15	20	25	30	35	40	45
f_i :	7	3	8	5	6	8	4	9

Solution We have to calcualte mean deviation about median. So, first we calculate median.

x _i	f_i	Cumulative frequency	$ d_i = x_i - 30 $	$f_i \left d_i \right $
10	7	7	20	140
15	3	10	15	45
20	8	18	10	80
25	5	23	5	25
30	6	29	0	0
35	8	37	5	40
40	4	41	10	40
45	9	50	15	135
	$N = \sum f_i = 50$			$\sum f_i d_i = 505$

We have, $N = 50 \Rightarrow N/2 = 25$.

The cumulative frequency just greater than N/2 is 29 and the corresponding value of x is 30. Hence, median = 30.

Now, Mean deviation = $\frac{1}{N} \sum f_i |d_i| = \frac{505}{50} = 10.1$

III. Mean Deviation of A Grouped or Continuous Frequency Distribution

For calculating mean deviation of a continuous frequency distribution the procedure is same as for a discrete frequency distribution. The only difference is that here we have to obtain the mid-points of the various classes and take the deviations of the these mid-points from the given central value (median or mean).

