MATHEMATICS

CLASS NOTES FOR CBSE

Chapter 14. Stastics

01. Mean Deviation

I. Mean Deviation For Ungrouped Data or Individual Observations

If $x_{1}, x_{2}, \ldots, x_{n}$ are n values of a variable X, then the mean deviation from an average. A (median or Arithmetic Mean) is given by

$$
\text { M.D. }=\frac{1}{n} \sum_{i=1}^{n}\left|x_{1}-A\right|=\frac{1}{n} \Sigma\left|d_{i}\right|, \text { where } d_{i}=x_{i}-A
$$

We may use the following algorithm to find mean deviation of individual observations:

Algorithm

Step I Compute the central value or average ' A ' about which mean deviation is to be calculated.
Step II Take deviations of the observations about the central value 'A' obtained in Step I ignoring \pm sings and denote these deviations by $\left|d_{i}\right|$.

Step III Obtain the total of these deviations i.e. $\quad \sum_{i=1}^{n}\left|d_{i}\right|$.
Step IV Divide the total obtained in step III by the number of observations.

Example 1 Find the mean deviation from the mean for the following data :
$6,7,10,12,13,4,8,20$
Solution Let \bar{X} be the mean of the given data. Then,

$$
\bar{X}=\frac{6+7+10+12+13+4+8+20}{8}=10
$$

Compounds of Mean Deviation

x_{i}	$\left\|d_{i}\right\|=\left\|x_{i}-\overline{\mathrm{X}}\right\|=\left\|x_{i}-10\right\|$
6	4
7	3
10	0
12	2
13	3
4	6
8	2
20	10
Total	$\sum d_{i}=30$

We have, $\quad \sum\left|d_{i}\right|=30$ and $n=8$

$$
\therefore \quad \text { M.D. }=\frac{1}{n} \sum\left|d_{i}\right|=\frac{30}{8}=3.75
$$

Example 2 Calcualte the mean deviation about median from the following data : 340, 150, 210, 240, 300, 310, 320.
Solution Arranging the observations in ascending order of magnitude, we have 150, 210, 240, 300, 310, 320, 340.
Clearly, the middle observation is 300 . So, medina $=300$.

Calculation of Mean Deviation					
x_{i}		$	$	340	40
:---:	:---:				
150	150				
210	90				
240	60				
300	0				
310	10				
320	20				
Total	$d_{i}=\sum\left\|x_{i}-300\right\|=370$				
	M.D. $=\frac{1}{n} \sum\left\|d_{i}\right\|=\frac{1}{7} \sum\left\|x_{i}-300\right\|=\frac{370}{7}=52.8$				

II. Mean Deviation of A Discrete Frequency Distribution

If $x_{i} / f_{i} ; i=1,2, \ldots, n$ is the frequency distribution, then mean deviation from an average A (median or Arithmetic Mean) is given by

$$
M . D .=\frac{1}{N} \sum_{i=1}^{n} f_{i}\left|x_{1}-A\right|, \text { where } \sum_{i=1}^{n} f_{i}=N
$$

We may use the following algorithm to find the mean deviation of a discrete frequency distribution.

Algorithm

Step I Calculate the central value or average ' A ' of the given frequency distribution about which mean deviation is to be calculated.
Step II Take deviations of the observations from the central value in step I ignoring sings and denote them by $\left|d_{i}\right|$.
Step III Multiply these deviations by respective frequencies and obtain the total $\sum_{i=1}^{n} f_{i}\left|d_{i}\right|$.
Step IV Divide the total obtained in step III by the number of observations i.e. $N=\sum_{i=1}^{n} f_{i}$ to obtain the mean deviation.

Example 1 Calculate the mean deviation about mean from the following data :

$x_{i}:$	3	9	17	23	27
$f_{i}:$	8	10	12	9	5

Solution Calculation of mean deviation about mean.

x_{i}	f_{i}	$f_{i} x_{i}$	$\left\|x_{i}-15\right\|$	$f_{i}\left\|x_{i}-15\right\|$
3	8	24	12	96
9	10	90	6	60
17	12	204	2	24
23	9	207	8	72
27	5	135	12	60
	$N=\sum f_{i}=44$	$N=\sum f_{i} x_{i}=660$		$\sum f_{i}\left\|x_{i}-15\right\|=312$

Mean $=\overline{\mathrm{X}}=\frac{1}{N}\left(\sum f_{i} x_{i}\right)=\frac{660}{44}=15$
Mean deviation $=$ M.D. $=\frac{1}{N} \sum f_{i}\left|x_{i}-15\right|=\frac{312}{44}=7.09$

Example 2 Calculate the mean deviation from the median for the following distribution:

$x_{i}:$	10	15	20	25	30	35	40	45
$f_{i}:$	7	3	8	5	6	8	4	9

Solution We have to calcualte mean deviation about median. So, first we calculate median.

x_{i}	f_{i}	Cumulative frequency	$\left\|d_{i}\right\|=\left\|x_{i}-30\right\|$	$f_{i}\left\|d_{i}\right\|$
10	7	7	20	140
15	3	10	15	45
20	8	18	10	80
25	5	23	5	25
30	6	29	0	0
35	8	37	5	40
40	4	41	10	40
45	9	50	15	135
	$N=\sum f_{i}=50$			$\sum f_{i}\left\|d_{i}\right\|=505$

We have, $N=50 \Rightarrow N / 2=25$.
The cumulative frequency just greater than $N / 2$ is 29 and the corresponding value of x is 30 . Hence, median $=30$.
Now, \quad Mean deviation $=\frac{1}{N} \sum f_{i}\left|d_{i}\right|=\frac{505}{50}=10.1$

III. Mean Deviation of A Grouped or Continuous Frequency Distribution

For calculating mean deviation of a continuous frequency distribution the procedure is same as for a discrete frequency distribution. The only difference is that here we have to obtain the mid-points of the various classes and take the deviations of the these mid-points from the given central value (median or mean).

