

IIT-JEE · NEET · CBSE eBOOKS

CLASS 11&12th

CLASS 12th

P-Block Elements

P-Block Elements

01. Nitrogen Family

The general electronic configuration is [noble gas] ns²np³.

- (i) Atomic and Ionic radii: Covalent radius: N<P<As<Sb<Bi
- (ii) **Ionization enthalpies :** N>P>As>Sb>Bi(IE₁ values)
- (iii) Electronegativity: N>P>As>Sb=Bi
- (iv) Catenation: The group 15 elements also show catenation property but to much smaller extent than carbon. Among group 15 elements P has the maximum tendency for catenation forming cyclic as well as open chain compounds consisting of many phosphorous atoms.
- (v) Valency and oxidation number: Gen. configuration: ns^2np^3 . Valency = 3.

02. Compounds of V-A Group

Formation of Hydrides

- (i) Hydrides formed have YH₃ formula {NH₃, PH₃, AsH₃, SbH₃, BiH₃}
- (ii) NH₃ neutralises protic acids as well as aprotic acids (Lewis Acid) so ammonia is strong base.
- (iii) NH₃ will have high boiling point due to H-bond.
- (iv) Tendency of H-bonding and B.P. $NH_3 > PH_3 > AsH_3 > SbH_3 > BiH_3$.
- (v) NH₃ cannot acts as a reducing agent and BiH₃ is strongest reducing agent.
- (vi) N_3^- is called Azide Ion \longrightarrow Has 4 lone pair

e.g. $Ba^{+2}N_3^- \rightarrow Barium Azide [Ba(N_3)_2]$

03. Formation of Halides

- (i) **Tri Halides :** All possible trihalides of all these elements are known except NCl₃, NBr₃, and NI₃ Because :
 - (a) Low polarity of the N X bond.
 - (b) Weakness of N X bond due to large size difference.
- (ii) Penta Halides:
 - (a) Except N and Bi all forms pentahalides, N does not form due to absence of d-orbital Bi does not form due to inert pair effect.
 - (b) PCl₅ acts as an effective chlorinating Agent so it decomposes into PCl₅ \rightarrow PCl₃+Cl₂

04. Nitrogen (N₂)

Preparation of N_2 :

- (i) $(NH_4)_2 Cr_2O_7 \xrightarrow{\Delta} N_2 + 4H_2O + Cr_2O_3$
- (ii) $2NH_3 + 3NaOC1 \rightarrow N_2 + 3NaC1 + H_2O$

$$Ba(N_3)_2 \xrightarrow{\Delta} Ba + 3N_2$$
Purest N_2 obtained

(iii) $2NaN_3 \xrightarrow{\Delta} 2Na + 3N_2$ by this method

Properties of N₂:

(i) It is absorbed by hot metal like Ca, Mg, Al etc.

$$3Ca + N_2 \rightarrow Ca_3N_2$$

Bright hot
$$2Al + N_2 \rightarrow 2AlN$$

$$Al_2O_3 + 3C + N_2 \xrightarrow{\Delta} 2AlN + 3CO$$

$$Na_2B_4O_7 + 2NH_4C1 \xrightarrow{\Delta} 2NaC1 + 2NH_3 + 2B_2O_3 + H_2O$$

$$B_2O_3 + 2NH_3 \longrightarrow 2BN + 3H_2O$$

(ii) N_2 can be absorbed by calcium carbide at the temp around $1000^{\circ}C$ CaC_2

$$CaC_2 + N_2 \xrightarrow{1000^{\circ}C} CaNCN + C$$
cyanamide ion

It is a very good fertilizer.

Types of Nitride:

(i) Salt like or ionic: Li₃N, Na₃N, K₃N(?), Ca₃N₂, Mg₃N₂, Be₃N₂

(ii) Covalent : AIN, BN, Si₃N₄, Ge₃N₄, Sn₃N₄

(iii)

Interstitial : MN
$$M = Sc$$
, Ti, Zr, Hf, La
HCP or FCC

05. Oxides of Nitrogen

Oxides of nitrogen	Structure	Physical state	Colour of gas
N_2O	$\overline{N} = \overline{N} = O$	Gas	Colourless
NO	:N = O: or :N = O:	Gas	Colourless
N_2O_3	O = N - O - N $O = N - O - N$ O	O-	Blue liquid (-30°C)
NO_2	$2N = 0 \\ N-N = 0$	Gas	Brown
N_2O_5		Colourless solid	-(no existence in gas phase)

Preparation:

 N_2O

NO

$$KNO_3 + FeSO_4 + H_2SO_4 \longrightarrow Fe_2(SO_4)_3 + K_2SO_4 + NO + H_2O$$

$$FeSO_4 + NO \longrightarrow FeSO_4 \cdot NO \xrightarrow{\Delta} FeSO_4 + NO\uparrow$$

 N_2O_3

$$Cu + HNO_3(6M) \longrightarrow Cu(NO_3)_2 + (NO + NO_2)$$

$$Cool(-30^{\circ}C)$$
Blueliq (N₂O₃)

 NO_2

(Cu, Pb, Ag) + HNO₃
$$\longrightarrow$$
 M-nitrate + NO₂ + H₂O (hot & conc.)

 N_2O_5

$$2HNO_3 + P_2O_5 \longrightarrow 2HPO_3 + N_2O_5$$

Reaction with H₂O & NaOH

H_2O		NaOH
(i)	N ₂ O: Fairly soluble in water and produces neutral solution	
(ii)	NO: Sparingly soluble in water and produces neutral sol ⁿ .	
(iii)	N ₂ O ₃ : 2HNO ₂ Hence it is known as anhydrode of HNO ₂	$NaNO_2$
(iv)	NO ₂ : HNO ₂ + HNO ₃ called as mixed anhydride	$NaNO_2 + NaNO_3$
(v)	N ₂ O ₅ : 2HNO ₃ called as anhydride of HNO ₃	NaNO ₃

Other properties:

 N_2O

$$Cu + N_2O \rightarrow CuO + N_2$$
, $H_2 + N_2O \rightarrow H_2O + N_2$

NO

It is having reducing property.

$$KMnO_4 + NO + H_2SO_4 \longrightarrow K_2SO_4 + MnSO_4 + HNO_3 + H_2O$$

$$HOC1 + NO + H_2O \rightarrow HNO_3 + HC1$$

 NO_2

$$S + NO_2 \rightarrow SO_2 + NO$$
, $P + NO_2 \rightarrow P_2O_5 + NO$

 N_2O_5

$$I_2 + 5N_2O_5 \rightarrow I_2O_5 + 10NO_2$$
 I_2O_5 is used for the estimation of CO

$$I_2O_5 + 5CO \longrightarrow I_2 + 5CO_2$$