CRASH COURSE

JEE ADVANCED 2021-22

PHYSICS

* This is for the Sample Study Material. we provides all the study material to purchased user. Please check the course details on www.misostudy.com

JEE Advanced 2021-22 CRASH COURSE

JEE Advanced crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Advanced. It is a focused course for the JEE Advanced aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Advanced Exam.
AImportant problem-solving and revision of all important topics with the last 7 years JEE Advanced analysis. ©Providing problem-solving tips and tricks for the exam. © 100% JEE Advanced pattern questions with detailed solutions. AThose questions are the focus on chapters with a high weight.
© Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. © Boosts confidence in students so that they can score well.

SET-1

(Q1 \& 2) Only One Option Correct

1. The sum, difference and cross product of two vectors \vec{A} and \vec{B} are mutually perpendicular if
(a) \vec{A} and \vec{B} are perpendicular to each other and $|\vec{A}|=|\vec{B}|$
(b) \vec{A} and \vec{B} are perpendicular to each other
(c) \vec{A} and \vec{B} are perpendicular but their magnitudes are arbitrary
(d) $|\vec{A}|=|\vec{B}|$ and their directions are arbitrary
2. The $|u|,|v|$ graph for a concave mirror is as shown in figure. Here $|u|>|f|$. A line passing through origin of slope 1 cuts the graph at point P. Then co-ordinates of point P are

(a) $\quad(|2 f|,|2 f|)$
(c) $\quad(|f|,|2 f|)$
(b) $\quad(|2 f|,|f|)$
(d) $(|f|,|f|)$

(Q3) More Than One Option Correct

3. Units off $C R^{2}$ is/are ($C=$ capacitance and $R=$ resistance $)$.
(a) henry
(b) $\frac{\text { volt }- \text { second }}{\text { ampere }}$
(c) $\frac{\text { volt }}{\text { ampere }}$
(d) $\frac{\text { joule }}{\text { ampere }^{2}}$

(Q4) Matrix Match

4. For component of a vector $\vec{A}=(3 \hat{i}+4 \hat{j}-5 \hat{k})$, match the following table

Table-1	Table-2
(a) Along y-axis	(p) 5 unit
(b) Along another vector $(2 \hat{i}+\hat{j}+2 \hat{k})$	(q) 4 unit
(c) Along $(6 \hat{i}+8 \hat{j}+10 \hat{k})$	(r) Zero
(d) Along another vector $(-3 \hat{i}+4 \hat{j}+5 \hat{k})$	(s) None

(Q5 \& 6) Only One Option Correct

5. A particle moves in space along the path $z=a x^{3}+b y^{2}$ in such a way that $\frac{d x}{d t}=c=\frac{d y}{d t}$ where a, b and c are constants. The acceleration of the particle is
(a) $\left(6 a c^{2} x+2 b c^{2}\right) \hat{k}$
(c) $\left(4 b c^{2} x+3 a c^{2}\right) \hat{k}$
(b) $\left(2 a x^{2}+6 b y^{2}\right) \hat{k}$
(d) $\left(b c^{2} x+2 b y\right) \hat{k}$
6. A particle is dropped from point A at a certain height from ground. It falls freely and passes through three points B, C and D with $B C=C D$. The time taken by the particle to move form B to C is 2 s and from C to D is 1 s . The time taken to move from A to B is
(a) 0.5 s
(c) 0.75 s
(b) 1.5 s
(d) 0.25 s

SET-2

(Q1 \& 2) Only One Option Correct

1. The distance between two moving particles at any time is a. If v be their relative velocity and v_{1} and v_{2} be the components of v along and perpendicular to a. The time when they are closest to each other are
(a) $\frac{a v_{1}}{v^{2}}$
(c) $\frac{a v}{v_{1}^{2}}$
(b) $\frac{a v_{2}}{v^{2}}$
(d) $\frac{a v}{v_{2}^{2}}$
2. In the one-dimensional motion of a particle, the relation between position x and time t is given by $x^{2}+2 x=t$ (here $x>0$). Choose the correct statement
(a) the retardation of the particle $\frac{1}{4(x+1)^{3}}$
(b) the uniform velocity of the particle is $\frac{1}{(x+1)^{3}}$
(c) Both are correct
(d) Both are wrong

(Q3) More Than One Option Correct

3. Let \vec{v} and \vec{a} be the instantaneous velocity and acceleration of a particle moving in a plane. The, rate of change of speed $\frac{d v}{d t}$ of the particle is equal to
(a) $\underset{\rightarrow \vec{a} \mid}{\vec{a} \mid}$
(b) $\frac{v \cdot a}{v}$
(c) the component of \vec{a} parallel to \vec{v}
(d) the component of \vec{a} perpendicular to \vec{v}

(Q4 \& 5) Comprehension Type

Passage

At time $t=0$, particle A is at $(1 m, 2 m)$ and B is at $(5 m, 5 m)$. Velocity of B is $(2 \hat{i}+4 \hat{j}) \mathrm{m} / \mathrm{s}$ velocity of particle A is $\sqrt{2} v$ at 45° with x-axis. A collides with B.
4. Value of v is. \qquad m / s.
(a) 5
(c) 25
(b) 15
(d) 10
5. Time when A will collide with B is \qquad second.
(a) 0.5 s
(c) 4 s
(b) 1.5 s
(d) 3 s

The Best Online Coaching for JEE•NEET•CBSE Prep www.misostudy.com

Answer \& Solutions

SET-1

(Q1 \& 2) Only One Option Correct

1. (d)

Let $\vec{A}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$
$\vec{B}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$
$(\vec{A}+\vec{B}) \perp(\vec{A}-\vec{B})$ given
$(\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})=0$
$|\vec{A}|=|\vec{B}|$
$\vec{A} \times \vec{B} \perp$ to plane formed by \vec{A} and \vec{B} or $\vec{A}+\vec{B}$ and $\vec{A}-\vec{B}$
2. (a)

When object at centre of curvature, image coincides with object.

(Q3) More Than One Option Correct

3. (a, b, d)

Time constant in $C-R$ and $L-R$ circuits are $C R$ and $\frac{L}{R}$
$\mathrm{CR}=\frac{\mathrm{L}}{\mathrm{R}}$ or $\mathrm{CR}^{2} \equiv \mathrm{~L}$ units of CR^{2} and L are same
$|E|=L\left(\frac{d I}{d t}\right)$ and $U=\frac{1}{2} L i^{2}$
\Rightarrow Units of L or $\mathrm{CR}^{2}, \frac{V-\text { second }}{A}$ and $\frac{J}{A^{2}}$

(Q4) Matrix Match

4.

(a) \rightarrow (q)
(b) \rightarrow (r)
$(\mathrm{c}) \rightarrow(\mathrm{s})$
(d) \rightarrow (s)

(Q5 \& 6) Only One Option Correct

5. (a)
$\frac{d \alpha}{d t}=\frac{d y}{d t}=c$
$\frac{d^{2} \alpha}{d t^{2}}=\frac{d^{2} y}{d t^{2}}=0$
$\mathrm{Z}=a x^{3}+b y^{2}$
$=3 a c x^{2}+2 b c y$
$\frac{d^{2} Z}{d t^{2}}=6 a c \times\left(\frac{d x}{d t}\right)+2 b c\left(\frac{d y}{d t}\right)$
$=6 a c^{2}+2 b c^{2}$
$\vec{a}=\frac{d^{2} x}{d t^{2}} \hat{i}+\frac{d^{2} y}{d t^{2}} \hat{j}+\frac{d^{2} z}{d t^{2}} \hat{k}$
$\left(6 a c^{2} x+2 b c^{2}\right) \hat{k}$
6. (a)
$\mathrm{t}_{\mathrm{AB}}=\mathrm{t}$

$y=\frac{1}{2} g t^{2}$
$\mathrm{y}+\mathrm{h}=\frac{1}{2} \mathrm{~g}(\mathrm{t}+2)^{2}$
$\mathrm{y}+2 \mathrm{~h}=\frac{1}{2} \mathrm{~g}(\mathrm{t}+3)^{2} \mathrm{~h}$
$\Rightarrow \mathrm{t}=.5 \mathrm{~s}$

SET-2

(Q1 \& 2) Only One Option Correct

1. (a)
$V^{2}=V_{1}^{2}+V_{2}^{2} \Rightarrow \tan \theta=\frac{V_{1}}{V_{2}}$
$\cos \theta=\frac{V_{2}}{\sqrt{v_{1}^{2}+v_{2}^{2}}}$

The Best Online Coaching for JEE \cdot NEET \cdot CBSE Prep www.misostudy.com

Z8929803804 | support@misostudy.com
$=\frac{V_{2}}{v}$

$\sin \theta=\frac{V_{1}}{\sqrt{V_{1}^{2}+V_{2}^{2}}}=\frac{V_{1}}{V}$
Time $\frac{A C}{V}=\frac{A B \sin \theta}{V}=\frac{a v_{1}}{v^{2}}$
2. (a)
$\frac{d t}{d x}=2(x+1) \Rightarrow v=\frac{d x}{d t}$
$\Rightarrow v=\frac{1}{2(x+1)}$ and $a=\frac{d v}{d t}$
$\Rightarrow-\frac{1}{2(x+1)^{2}} \cdot \frac{d x}{d t}=-\frac{1}{4(x+1)^{3}}$

(Q3) More Than One Option Correct

3. (b, c)

Speed $v^{2}=v_{x}^{2}+v_{y}^{2}$
$\Rightarrow 2 V \frac{d v}{d t}=2 v_{x} \frac{d v_{x}}{d t}+2 v_{y} \frac{d v_{y}}{d t}$
$\Rightarrow \frac{d v}{d t}=\frac{v_{x} a x+v_{y} a y}{v}=\frac{\overrightarrow{v \cdot \vec{a}}}{v}$
Compound of $\vec{a} \|$ to v

(Q4 \& 5) Comprehension Type

4. (d)
$\vec{V}_{A}=V \hat{i}+V \hat{j}$
$\vec{V}_{B}=2 \hat{i}+4 \hat{j}$
$\vec{V}_{A B}=(V-2) \hat{i}+(V-4) \hat{j}$
$\overrightarrow{A B}=(4 \hat{i}+3 \hat{j})$
$\vec{V}_{A B} \uparrow \uparrow \overrightarrow{A B} i+\frac{V-2}{4}=\frac{V-4}{3}$
$\Rightarrow \mathrm{V}=10$

The Best Online Coaching for JEE•NEET \cdot CBSE Prep www.misostudy.com
5.(d)
$\left|\vec{V}_{A B}\right|=10$
$|A \vec{B}|=5 \Rightarrow t=\frac{|\overrightarrow{A B}|}{\left|\vec{V}_{A B}\right|}=.5 \mathrm{sec}$

CHEMISTRY

JEE Advanced 2021-22 CRASH COURSE

JEE Advanced crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Advanced. It is a focused course for the JEE Advanced aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Advanced Exam.
©Important problem-solving and revision of all important topics with the last 7 years JEE Advanced analysis. ©Providing problem-solving tips and tricks for the exam. © 100\% JEE Advanced pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight.

- Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. © Boosts confidence in students so that they can score well.

[One Option Correct]

1. 1.020 g of metallic oxide contains 0.540 g of the metal. Calculate the equivalent mass of the metal and hence its atomic mass with the help of Dulong and Petit's law. Taking the symbol for the metal as M . find the molecular formula of the oxide. The specific heat of the metal is $0.216 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}$.
(a) $\mathrm{M}_{2} \mathrm{O}_{3}$
(b) $\mathrm{M}_{4} \mathrm{O}_{3}$
(c) $\mathrm{M}_{2} \mathrm{O}_{4}$
(d) $\mathrm{M}_{3} \mathrm{O}_{5}$
2. A partially dried clay mineral contains 8% water. The original sample contained 12% water and 45% silica. The $\%$ of silica in the partially dried sample is nearly.
(a) 50%
(b) 49%
(c) 55%
(d) 47%
3. A mixture in which the mole ratio of H_{2} and O_{2} is $2: 1$ is used to prepare water by the reaction,

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The total pressure in the container is 0.8 atm at $20^{\circ} \mathrm{C}$ before the reaction. Determine the final pressure at $120^{\circ} \mathrm{C}$ after reaction assuming 80% yield of water.
(a) 0.8054 atm
(b) 0.7864 atm
(c) 0.9744 atm
(d) 0.6964 atm
4. A mixture of HCOOH and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is heated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The gas produced is collected and on treating with KOH solution, the volume of the gas decreases by $1 / 6$ th.
Calculate the molar ratio of the two acids in the original mixture.
(a) $2: 3$
(b) $6: 5$
(c) $4: 1$
(d) $8: 6$

[Integer Type Questions]

5. A plant virus is found to consist of uniform cylindrical particles of $150 \AA$ in diameter and $5000 \AA$ long. The specific volume of the virus is $0.75 \mathrm{~cm}^{3} / \mathrm{g}$. If the virus is considered to be a single particle, find its molecular mass.
6. On dissolving 2.0 g of metal in sulphuric acid, 4.51 g of the metal sulphate was formed. The specific heat of the metal is $0.057 \mathrm{cal} \mathrm{g}^{-1}$. What is the valency of the metal and exact atomic mass ?

[Matrix Matching]

7. Match the Column-X and Column-Y:

Column-X Column-Y
(a) $1.6 \mathrm{~g} \mathrm{CH}_{4}$
(i) 0.1 mol
(b) 1.7 g NH 3
(ii) 6.023×10^{23} electrons
(c) HCHO
(iii) 40% carbon
(d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(iv) Vapour density $=15$

[One Option Correct]

8. The ratio of the frequency corresponding to the third line in Lyman series of hydrogen atomic spectrum to that of the first line in Balmer series of Li^{2+} spectrum is
(a) $\frac{4}{5}$
(c) $\frac{4}{3}$
(b) $\frac{5}{4}$
(d) $\frac{3}{4}$
9. A parent nucleus X is decaying into daughter nucleus Y which in turn decays to Z . Half lives of X and Y are 40000 years and 20 years respectively. In certain sample, it is found that the number of Y nuclei hardly changes with time. If the number of X nuclei in the sample is 4×10^{20}, the number Y nuclei present in it is:
(a) 2×10^{17}
(c) 4×10^{23}
(b) 2×10^{20}
(d) 4×10^{20}
10. Three isotopes of an element have mass numbers $M,(M+1)$ and $(M+2)$. If the mean mass number is $(M+0.5)$, then which of the following ratios may be accepted for $M,(M+1)$, $(M$ $+2)$ in that order?
(a) $1: 1: 1$
(b) $4: 1: 1$
(c) $3: 2: 1$
(d) $2: 1: 1$

The Best Online Coaching for JEE•NEET•CBSE Prep

Answer \& Solutions

1. (a)

Mass of oxygen is the oxide $=(1.020-0.540)=0.480 \mathrm{gm}$
Equivalent mass of the metal $=\frac{0.540}{0.480} \times 8=9 \mathrm{gm}$
According to Dulong and Petit's law

$$
\begin{aligned}
& \text { Approx. atoms mass }=\frac{6.4}{\text { SP. heat }}=\frac{64}{0.216}=29.63 \\
& \text { Valency of the metal }=\frac{\text { At. mass }}{\text { Eq. heat }}=\frac{29.63}{9} \approx 3
\end{aligned}
$$

Hence,
the formula of the oxide $=\mathrm{M}_{2} \mathrm{O}_{3}$
2. (d)

	Clay	Silica	Water
Initial stage	43%	45%	12%
Final stage	$(92-x)$	x	8%

Ratio of silica and clay will remain constant, before and after drying.

$$
\frac{45}{43}=\frac{x}{92-x}
$$

$\therefore \quad x=47 \%$
(e)
3. (b)

$$
\begin{array}{rl}
& \mathrm{pH}_{2}=\frac{2}{3} \times 0.8=0.533 \mathrm{~atm} \\
& \mathrm{pO}_{2}=\frac{1}{3} \times 0.8=0.266 \mathrm{~atm} \\
& 2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{t}=0 & 0.533 \quad 0.266 \quad 0
\end{array}
$$

After the reaction $=\frac{0.533 \times 20}{100}=0.1066, \frac{0.266 \times 20}{100}=0.0533, \frac{0.533 \times 80}{100} 0.4264$.
Total pressure $=0.1066+0.0533+0.4264=0.5863$
Using Gay-Lussac's law

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \\
& \frac{0.5863}{293}=\frac{\mathrm{P}_{2}}{393} \\
\Rightarrow \quad & \mathrm{P}_{2}=0.7864 \mathrm{~atm}
\end{aligned}
$$

4. (c)

Let " a " moles of HCOOH and " b " moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ be present in the original mixture moles of CO formed $=a+b$ moles of CO_{2} formed $=b$
Total moles of gases $=a+2 b$
Now

$$
\begin{aligned}
& \frac{a+2 b}{6}=b \\
\Rightarrow \quad & a=4 b \Rightarrow \frac{a}{b}=4 \\
\Rightarrow \quad & a: b=4: 1
\end{aligned}
$$

5. 114.72

Equivalent mass of $\mathrm{SO}_{4}{ }^{2-}$ radical $=\frac{\text { Ionic mass }}{\text { Valency }}$
$=\frac{96}{2}=48$
Mass of metal sulphate $=4.51 \mathrm{gm}$
Mass of metal $=2.0 \mathrm{gm}$
Mass of sulphate radical $=4.51-2=2.51 \mathrm{gm}$
2.51 gm of sulphate combine with 2 gm of metal.

So, 48 gm of sulphate will combine with $=\frac{2}{2.51} \times 48=38.24 \mathrm{gm}$ metal
\therefore Equivalent mass of metal $=38.24 \mathrm{gm}$
According to Dulong and Petit's law
Approximate atomic mass $=\frac{6.4}{\text { Speci fic heat }}=\frac{6.4}{0.057}=112.5$
Valency $=\frac{\text { Approximate atomic mass }}{\text { Equivalent mass }}=\frac{112.5}{38.24} \approx 3$
Exact atomic mass $=38.24 \times 3=\mathbf{1 1 4 . 7 2}$
6. (a) \rightarrow (i), (ii),
(b) \rightarrow (i), (ii),
(c) \rightarrow (iii), (iv),
(d) \rightarrow (iii)
(a) $1.6 \mathrm{~g} \mathrm{CH}_{4}=\frac{1.6}{16}=0.1 \mathrm{~mole}$

$$
\begin{aligned}
& =0.1 \times 6.022 \times 10^{23} \times 10 \\
& =6.022 \times 10^{23} \text { electron }
\end{aligned}
$$

The Best Online Coaching for JEE•NEET•CBSE Prep www.misostudy.com

Crash course for JEE Advanced 2021-22
(b) $1.7 \mathrm{~g} \mathrm{NH} 33=\frac{1.7}{17}=0.1$ mole

$$
\begin{aligned}
& =0.1 \times 6.022 \times 10^{23} \times 10 \\
& =6.022 \times 10^{23} \text { electron }
\end{aligned}
$$

(c) $\%$ of "c" $=\frac{12}{30} \times 100=40 \%$
$\mathrm{MM}=2 \times \mathrm{VD}$
$\mathrm{VD}=\frac{\mathrm{MM}}{2}=\frac{30}{2}=15$
(d) $\%$ of "c" $=\frac{6 \times 12}{180} \times 100=\frac{72}{180} \times 100=40 \%$
7. (d)

For third line in Lyman series.

$$
\begin{aligned}
\mathrm{n}_{1} & =1 ; \mathrm{n}_{2}=4 \\
\mathrm{~V}_{\mathrm{H}} & =\frac{\mathrm{C}}{\lambda}=\mathrm{C} \cdot \mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right] \\
& =\mathrm{C} \cdot\left(\mathrm{R}_{\mathrm{H}}\right)(1)^{2}\left[\frac{1}{1^{2}}-\frac{1}{4^{2}}\right] \\
\mathrm{V}_{\mathrm{H}} & =\frac{15}{16} \mathrm{R}_{\mathrm{H}} \mathrm{C}
\end{aligned}
$$

For first line in Balmer series for Li^{2+}

$$
\begin{aligned}
& \mathrm{n}_{1}=2 ; \mathrm{n}_{2}=3 \\
& \mathrm{~V}_{\mathrm{Li}^{2+}}=\left(\mathrm{R}_{\mathrm{H}}\right)\left(\mathrm{Z}^{2}\right)\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right] \\
&=\left(\mathrm{R}_{\mathrm{H}}\right)\left(3^{2}\right)\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right] \\
&=\mathrm{C} \mathrm{R}_{\mathrm{H}} \times 9 \times \frac{5}{36}=\frac{5}{4} \mathrm{CR}_{\mathrm{H}} \\
& \therefore \quad \quad \quad \frac{\mathrm{~V}_{\mathrm{H}}}{\mathrm{~V}_{\mathrm{Li}^{2+}}}=\frac{15}{6} \times \frac{4}{5}=\frac{3}{4}
\end{aligned}
$$

8. (a)

$$
\mathrm{X} \xrightarrow{\lambda_{x}} \mathrm{Y} \xrightarrow{\lambda_{y}} \mathrm{Z}
$$

At equilibrium

$$
\begin{aligned}
\lambda_{x} \mathrm{~N}_{x} & =\lambda_{y} \mathrm{~N}_{y} \\
\mathrm{~N}_{y} & =\frac{\lambda_{x}}{\lambda_{y}} \times N_{x} \\
& =\frac{\left(t_{1 / 2}\right)_{y}}{\left(t_{1 / 2}\right)_{x}} \times N_{x} \\
& =\frac{20}{40000} \times 4 \times 10^{20} \\
& =2 \times 10^{17}
\end{aligned}
$$

The Best Online Coaching for JEE - NEET \cdot CBSE Prep www.misostudy.com
9. (b)

Let the ratio is, $\mathrm{M}:(\mathrm{M}+1):(\mathrm{M}+2)=x: y: z$
Mean atomic mass $=\frac{M \times x+(M+1) \times y+(M+2) \times z}{(x+y+z)}$
$\mathrm{M}+0.5=\frac{x M+y(M+1)+z(M+2)}{(4+1+1)}$
$=\frac{4 M+1(M+1)+1(M+2)}{6}$
$=\frac{6 M+3}{6}=\frac{3(2 M+1)}{6}$
$=M+\frac{1}{2}=M+0.05=R H S$
Hence, "b" is the correct option
10. (a) (c)
$\operatorname{mvr}=\frac{n h}{2 \pi}$
$\mathrm{E}_{\mathrm{n}}=\mathrm{E}_{1} \times \frac{z^{2}}{n^{2}}$

The Best Online Coaching for JEE \cdot NEET \cdot CBSE Prep www.misostudy.com

88929803804 | support@misostudy.com
Misostudy | 65-A, 2nd fl., Ompro Tower, Kalu Sarai, New Delhi 110016

MATHEMATICS

JEE Advanced 2021-22 CRASH COURSE

JEE Advanced crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Advanced. It is a focused course for the JEE Advanced aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Advanced Exam.
© Important problem-solving and revision of all important topics with the last 7 years JEE Advanced analysis. AProviding problem-solving tips and tricks for the exam. © 100% JEE Advanced pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight.

- Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. © Boosts confidence in students so that they can score well.

1. If z, z_{2} are non-zero complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{1}+z_{2}\right|$ then z_{1} / z_{2} can be
(a) 1
(b) ω
(c) ω^{2}
(d) -1
2. Modulus of complex number whose reciprocal is Match the entries in Column I with entries in Column II

Column-I

(a) $\frac{1}{a}+\frac{1}{b+i c}$
(b) $\frac{1}{a-i b}-\frac{1}{a-i c}$
(c) $\frac{b}{a+i b}+\frac{c}{a-i c}$
(d) $\frac{1}{a+i b+i c}$

Column-II

(p) $\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|b-c|}$
(q) $\sqrt{a^{2}+(b+c)^{2}}$
(r) $\frac{|a| \sqrt{b^{2}+c^{2}}}{\sqrt{(a+b)^{2}+c^{2}}}$
(s) $\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|a||b+c|}$

3. Let α, β be roots of the equation
$a x^{2}+b x+c=0$, then equation whose roots are
Match the entries in Column-I with entries in Column-II

Column-I

Column-II

(a) $-1 / \alpha,-1 / \beta$
(p) $a x^{2}+2 b x+4 c=0$
(b) $-\alpha,-\beta$
(q) $a^{2} x^{2}+\left(2 a c-b^{2}\right)+c^{2}=0$
(c) α^{2}, β^{2}
(r) $c x^{2}-b x+a=0$
(d) $2 \alpha, 2 \beta$
(s) $a x^{2}-b x+c=0$
(a) (b) (q) (P
(b) (D) (C) © (S)
(c) (D) (C) (r) (S)
(d) (D) (C) (r)
4. Statement-I : If all the four roots of $x^{4}-4 x^{3}+a x^{2}-b x+1=0$ are positive, than $a=6$ and $b=4$.
Statement-II : If polynomial equation $P(x)=0$ has four positive roots, then the polynomial equation $P^{\prime}(x)=0$ has atleast 3 positive roots.
(a) Statement-I is True, Statement-II is True; Statement-II is correct explanation for Statement-I.
(b) Statement-I is True, Statement-II is true; Statement-II is not a correct explanation for Statement-I.
(c) Statement-I is True, Statement-II is False.
(d) Statement-I is False, Statement-II is True.
5. Let $a, b, c \in \mathbf{C}$ such that $a+b+c=0$.

If $|a|=|b|=|c|=1$, then $|a-b|^{3}+|b-c|^{3}+$ $|c-a|^{3}-3|a-b||b-c||c-a|$ is equal to
6. $a, b, c \in \mathbf{R}$ and a, b, c are in A.P. Match the expression in Column-I with the conditions/properties in Column-II.

Column-I

Column-II

(a) a^{2}, b^{2}, c^{2} are in A.P.
(p) $a=b=c$
(b) a^{2}, b^{2}, c^{2} are in G.P.
(q) $-\frac{1}{2} a, b, c$ are in G.P.
(c) a^{2}, b^{2}, c^{2} are in H.P.
(d) $a+b+c=\frac{3}{2}$
(r) $a, b,-\frac{1}{2} c$ are in G.P.
(s) $b=\frac{1}{2}$

7. Suppose four distinct positive numbers $a_{1}, a_{2}, a_{3}, a_{4}$ are in G.P. Let $b_{1}=a_{1}, b_{2}=b_{1}+a_{2}$, $b_{3}=b_{2}+a_{3}$ and $b_{4}=b_{3}+a_{4}$.
Statement-I : The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are neither in A.P. nor in G.P.
Statement-II : The number $b_{1}, b_{2}, b_{3}, b_{4}$ are in H.P.
(a) Statement-I is false and Statement-II is true.
(b) Statement-I is true and Statement-II is false
(c) Statement-I and Statement-II both are true
(d) Statement-I and Statement-II both are false
8. Statement-I : $\frac{1^{2}}{(1)(3)}+\frac{2^{2}}{(3)(5)}+\ldots+\frac{n^{2}}{(2 n-1)(2 n+1)}=\frac{n(n+1)}{2(2 n+1)}$

Statement-II : $\frac{1}{(1)(3)}+\frac{2}{(3)(5)}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2 n+1}$
(a) Statement-I is false and Statement-II is true.
(b) Statement-I is true and Statement-II is false
(c) Statement-I and Statement-II both are true
(d) Statement-I and Statement-II both are false

Paragraph Question

9. Given a sequence t_{1}, t_{2}, \ldots if its possible to find a function $f(r)$ such that

$$
t_{r}=f(r+1)-f(r)
$$

then

$$
\sum_{r=1}^{n} t_{r}=f(n+1)-f(1)
$$

(i) Sum of the series $\sum_{r=1}^{\infty} \frac{1}{4 r^{2}-1}$ is
(a) 2
(b) 1
(c) $1 / 2$
(d) $1 / 4$
(ii) If $u_{1}=1, u_{n+1}=2 u_{n}+1$, then u_{n+1} equals
(a) $2^{n}+1$
(b) $2^{n+1}-1$
(c) $2^{n}-2$
(d) $2^{n+1}-2$
(iii) If $x_{n}=1^{2}+(2)\left(2^{2}\right)+3^{2}+(2)\left(4^{2}\right)+\ldots$
$=n(n+1)^{2} / 2$ if n is even, then $\frac{x_{51}}{(13)\left(51^{2}\right)}$ is
10. Let m and n be two positive integers such that $m \geq n$. The number of ways of Match the entries in Column I with entries in Column II

Column-I

(a) distributing m distinct books among n children
(b) arranging n distinct books at m places
(c) selecting m persons out of n persons so that two particular persons are not selected
(d) number of functions from
$\{1,2,3, \ldots n\}$ to $\{1,2,3, \ldots m\}$
$\begin{array}{llll}\mathrm{p} & \mathrm{q} & \mathrm{r} & \mathrm{s}\end{array}$
(a) (D) (a) © (S)
(b) (D) (C) \bigcirc (S)
(c) (D) (C) \bigcirc (S)
(d) (D) (D) $($ ($)$

Column-II

(p) 0
(q) m^{n}
(r) n^{m}
(s) $\left({ }^{m} C_{n}\right)(n!)$

Answer \& Solutions

1. (b),(c)
$\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$. But $\left|z_{1}\right|=\left|z_{2}\right|=1$
$\therefore \quad\left|\frac{z_{1}}{z_{2}}\right|=1$
Also, $\quad \frac{\left|z_{1}+z_{2}\right|}{\left|z_{2}\right|}=\left|\frac{z_{1}}{z_{2}}+1\right|=1$
$\therefore \quad\left|\frac{z_{1}}{z_{2}}-(0+0 \mathrm{i})\right|=\left|\frac{z_{1}}{z_{2}}-(-1-0 \mathrm{i})\right|=1$
$\therefore \quad \mathrm{Z}_{1} / \mathrm{z}_{2}$ lies on \perp bisector of line segment joining $0+0 \mathrm{i} \&(-1+0 \mathrm{i})$

$\therefore \quad \operatorname{Re}\left(\mathrm{z}_{1} / \mathrm{z}_{2}\right)=-1 / 2$
$\therefore \quad \mathrm{Z}_{1} / \mathrm{z}_{2}=-1 / 2+$ ai
But , $\quad\left|\frac{z_{1}}{z_{2}}\right|=1$
$\therefore \quad \mid-1 / 2+$ ai $\mid=1$
$\Rightarrow \quad \frac{1}{4}+a^{2}=1 \Rightarrow a^{2}=3 / 4 \Rightarrow a= \pm \sqrt{3} / 2$
$\therefore \quad \frac{z_{1}}{z_{2}}=-1 / 2 \pm \frac{\sqrt{3}}{2} 1$
$=\dot{\omega}, \omega^{2}$
2. (a) \rightarrow (r),(b) \rightarrow (p),(c) $\rightarrow(\mathrm{s}),(\mathrm{d}) \rightarrow(\mathrm{q})$
(a)

$$
\begin{array}{ll}
& \left|\frac{\mathrm{a}+\mathrm{b}+\mathrm{i} \mathrm{c}}{\mathrm{a}(\mathrm{~b}+\mathrm{i} \mathrm{c})}\right|=|1 / z| \\
\Rightarrow & \frac{1}{|z|}=\frac{\sqrt{(\mathrm{a}+\mathrm{b})^{2}+\mathrm{c}^{2}}}{|\mathrm{a}| \sqrt{\mathrm{b}^{2}+\mathrm{c}^{2}}} \\
\therefore & |z|=\frac{|a| \sqrt{b^{2}+c^{2}}}{\sqrt{(a+b)^{2}+c^{2}}} \\
& a \rightarrow r
\end{array}
$$

(b)

$$
\left|\frac{1}{z}\right|=\left|\frac{a-i c-a+i b}{(a-i b)(a-i c)}\right|
$$

$$
\frac{1}{|z|}=\frac{|i(b-c)|}{|a-i b||a-i c|}=\frac{|b-c|}{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}
$$

$\therefore \quad|z|=\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|b-c|}$

$$
b \rightarrow p
$$

(c) $\quad\left|\frac{1}{z}\right|=\left|\frac{a b-i b+a c+i b c}{(a+i b)(a-i b)}\right|$

$$
=\frac{|a(b+c)|}{|(a+i b)(a-i c)|}
$$

$$
\frac{1}{|z|}=\frac{|a||b+c|}{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}
$$

$$
|z|=\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|a||b+c|}
$$

$$
c \rightarrow s
$$

(d)

$$
\begin{array}{ll}
\text { (d) } & \left|\frac{1}{z}\right|=\left|\frac{1}{a+i(b+c)}\right| \\
& \frac{1}{|z|}=\frac{1}{\sqrt{a^{2}+i(b+c)^{2}}} \\
\therefore & \\
& \\
& \\
& \\
& d \rightarrow q \mid=\sqrt{a^{2}+(b+c)^{2}}
\end{array}
$$

3. (a) \rightarrow (r),(b) \rightarrow (s),(c) \rightarrow (q),(d) \rightarrow (p)
(a) Replace x by $-1 / x$ in $a x^{2}+\mathrm{b} x+\mathrm{c}=0$ to get $\mathrm{a}-\mathrm{b} x+\mathrm{c} x^{2}=0$.

$$
\mathrm{a} \rightarrow \mathrm{r}
$$

(b) Replace x by $-x$ in $a x^{2}+b x+c=o$ to get $a x^{2}-b x+c^{2}=0$

$$
\mathrm{b} \rightarrow \mathrm{~s}
$$

(c) Replace x by \sqrt{x} in $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=\mathrm{o}$ to get $\mathrm{a}^{2} x^{2}+\left(2 \mathrm{ac}-\mathrm{b}^{2}\right) x+\mathrm{c}^{2}=0$

$$
c \quad \rightarrow \quad \mathrm{q}
$$

(d) Replace x by $x / 2$ in $\mathrm{ax}^{2}+\mathrm{b} x+\mathrm{c}=\mathrm{o}$ to get $\mathrm{ax}^{2}+2 \mathrm{~b} x+4 \mathrm{c}=0$

$$
\mathrm{d} \rightarrow \mathrm{q}
$$

4. (b)
let $x_{1}, x_{2}, x_{3}, x_{4}$ be the 4 roots of $x^{4}-4 x^{3}+\mathrm{a} x^{2}-\mathrm{b} x+1=\mathrm{O}$

$$
\begin{array}{ll}
\therefore & x_{1}+x_{2}+x_{3}+x_{4}=4 \\
& x_{1} x_{2} x_{3} x_{4}=1
\end{array}
$$

$$
\therefore \quad \overbrace{\text { A.M. of } x_{1}, x_{2}, x_{3}, x_{4}=1}^{\frac{1}{4}\left(x_{1}+x_{2}+x_{3}+x_{4}\right)} \quad \prod_{\text {G.M. of } x_{1}, x_{2}, x_{3}, x_{4}=1}^{\left(x_{1} x_{2} x_{3} x_{4}\right)^{1 / 4}}
$$

$$
\Rightarrow \quad x_{1}=x_{2}=x_{3}=x_{4}=1
$$

```
\(\therefore \quad x^{4}-4 x^{3}+b x^{2}-\mathrm{b} x+1=(\mathrm{x}-1)^{4}\)
\(\Rightarrow \quad a=6 \& b=4\)
```

Also, Between any 2 roots of $\mathrm{P}(\mathrm{x})$ lies one root of $\mathrm{P}^{\prime}(x)$ where $\mathrm{P}(\mathrm{x})$ is a polynomial
$\therefore \quad$ Statement $1 \& 2$ both are true (b)
5. The integer 0

$$
\begin{aligned}
& |b-c|^{2}+|b+c|^{2}=2\left(|b|^{2}+|c|^{2}\right) \\
& \\
& |b-c|^{2}+|-a|^{2}=2(1+1)=1 \\
\therefore & \\
& |b-c|^{2}=3 \\
& \\
\therefore & |b-c|=\sqrt{3}=|a-b|-|a-c| \\
& \\
& |a-b|^{3}+|b-c|^{3}+|c-a|^{3}-3|a-b||b-c||c-a| \\
& 3 \sqrt{3}+3 \sqrt{3}+3 \sqrt{3}-3 \sqrt{3} \sqrt{3} \sqrt{3}=0 .
\end{aligned}
$$

6.

$$
\begin{aligned}
(\mathrm{a}) \rightarrow & (\mathrm{p}),(\mathrm{b}) \rightarrow(\mathrm{p}),(\mathrm{c}) \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}),(\mathrm{d}) \rightarrow(\mathrm{s}) \\
& 2 \mathrm{~b}=\mathrm{a}+\mathrm{c} \\
\& & 2 \mathrm{~b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}
\end{aligned}
$$

(a) $\quad(\mathrm{a}+\mathrm{c})^{2}=(2 \mathrm{~b})^{2}$

$$
=4 b^{2}
$$

$$
=2\left(2 b^{2}\right)
$$

$\mathrm{a}^{2}+\mathrm{c}^{2}+2 \mathrm{ac}=2 \mathrm{a}^{2}+2 \mathrm{c}^{2}(\mathrm{a}-\mathrm{c})^{2}=0$
$\Rightarrow \quad a=c$ but $2 b=a+c$
$\Rightarrow \quad \mathrm{a}=\mathrm{b}=\mathrm{c}$
$\mathrm{a} \rightarrow \mathrm{p}$
(b) $\quad\left(b^{2}\right)^{2}=a^{2} c^{2}$
$\mathrm{b}^{2}= \pm \mathrm{ac}$
$\therefore \quad \mathrm{b}^{2}=\mathrm{ac}$
$\Rightarrow \quad a, b, c$ are in GP
Already, $\quad \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in ap
$\therefore \quad a=b=c$
$\therefore \quad \mathrm{b} \rightarrow \mathrm{p}$.
(c)
$\mathrm{b}^{2}=\frac{2 a^{2} c^{2}}{a^{2}+c^{2}}$
but, $\quad \mathrm{b}^{2}=\left(\frac{a+c}{2}\right)^{2}$
$\left(\frac{a+c}{4}\right)^{2}=\frac{2 a^{2} c^{2}}{a^{2}+c^{2}}$


```
    \(\mathrm{a}, \mathrm{b},-\mathrm{c} / 2\) are in GP
                                    \(\mathrm{c} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}\).
\[
\begin{array}{ll}
\text { (d) } & \mathrm{a}+\mathrm{b}+\mathrm{c}=3 / 2 \\
& \mathrm{~b}+2 \mathrm{~b}=3 / 2 \\
& 3 \mathrm{~b}=3 / 2 \\
\therefore & \mathrm{~b}=1 / 2 \\
\therefore & \mathrm{~d} \rightarrow \mathrm{~s}
\end{array}
\]
```

7. (b)

Let $a_{1}, a_{2}, a_{3}, a_{4}$, be in GP
$\therefore \quad a_{1}=a, a_{2}=a r, a_{3}=\operatorname{ar}^{2}, a^{4}=a r^{3}$ with $r=$ common ratio.
$\therefore \quad \mathrm{b}_{1}=\mathrm{a}$
$\mathrm{b}_{2}=\mathrm{a}+\mathrm{ar}=\mathrm{a}(1+\mathrm{r})$
$\mathrm{b}_{3}=\mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}$
$=a\left(1+\lambda+\lambda^{2}\right)$

$$
\mathrm{b} 4=\mathrm{a}\left(1+\lambda+\lambda^{2}+\lambda^{3}\right)
$$

Now,

$$
\mathrm{b}_{2}-\mathrm{b}_{1} \neq \mathrm{b}_{3}-\mathrm{b}_{2}
$$

$\therefore \quad \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}$ are not in AP
Also, $\quad \frac{b_{2}}{b_{1}} \neq \frac{b_{3}}{b_{2}}$
$\therefore \quad \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}$ are not in GP.
Also, $\quad 1 / b_{2}-1 / b_{1} \neq 1 / b_{3}-1 / b_{2}$
$\therefore \quad \frac{1}{b_{1}}, \frac{1}{b_{2}}, \frac{1}{b_{3}}, \frac{1}{b_{4}}$ are in AP
$\therefore \quad \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}$ are not in H.P
$\therefore \quad$ Statement (1) is true \& (2) statement is false
8. (b)

$$
\begin{aligned}
& t r=\frac{r^{2}}{(2 r-1)(2 r+1)} \\
& 4 \operatorname{tr}=\frac{4 r^{2}-1+1}{(2 r-1)(2 r+1)} \\
& 4 \operatorname{tr}=1+\frac{1}{2}\left(\frac{1}{(2 r-1)(2 r+1)}\right) \\
& 4 \sum_{r=1}^{n} t r=\sum_{r=1}^{n} 1+\frac{1}{2} \sum_{r=1}^{n} \frac{1}{(2 r-1)(2 r+1)} \\
& 4 \sum_{r=1}^{n} t r \quad=n+\frac{1}{2}\left(\frac{1}{1}-\frac{2}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\ldots \frac{-1}{2 n+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{n}+\frac{1}{2}\left(1-\frac{1}{2 n+1}\right) \\
& =\mathrm{n}+\frac{2}{2 n+1}=\frac{n(2 n+1)+n}{2 n+1} \\
\therefore \quad \sum_{r=1}^{n} t r & =\frac{1}{4}\left(\frac{2 n(n+1)}{2 n+1}\right) \\
& =\frac{2 n(n+1)}{2(2 n+1)}
\end{aligned}
$$

$$
\text { And, } \begin{aligned}
\quad & t r=\frac{1}{(2 r-1)(2 r+1)} \\
& =\frac{1}{2}\left(\frac{1}{2 r-1}-\frac{1}{2 r+1}\right) \\
\sum_{r=1}^{n} t r= & \frac{1}{2}\left(1-\frac{1}{2 n+1}\right) \\
& =\frac{n}{2 n+1}
\end{aligned}
$$

\therefore Statement (1) is true, Statement (2) is false.
9. $(1) \rightarrow(\mathrm{c}),(2) \rightarrow(\mathrm{b}),(3) \rightarrow(2)$
(1)

$$
\begin{aligned}
& \sum_{r=1}^{\infty} \frac{1}{4 r^{2}-1}=\sum_{r=1}^{\infty} \frac{1}{(2 r-1)(2 r+1)} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2}\left(\sum_{r=1}^{n}\left(\frac{1}{2 r-1}-\frac{1}{2 r+1}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{2}\left(1-\frac{1}{2 n+1}\right)=1 / 2
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{n}+1}-\mathrm{Un}=2 \mathrm{Un}
\end{aligned} \begin{aligned}
&+1-2 \mathrm{U}_{\mathrm{n}-1}-1 \\
&=2 \mathrm{Un}-2 \mathrm{U}_{\mathrm{n}-1} \\
&=2\left(\mathrm{Un}-\mathrm{U}_{\mathrm{n}-1}\right) \\
&=2.2\left(\mathrm{Un}^{2}-1-\mathrm{Un}^{2}-2\right) \\
&=2.2\left(\mathrm{U}_{\mathrm{n}-1}-\mathrm{U}_{\mathrm{n}-2}\right) \ldots \\
&=2^{\mathrm{n}-1}\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)=2^{\mathrm{n}-1}(3-1) \\
& \quad=2^{\mathrm{n}}
\end{aligned} \quad \begin{aligned}
\therefore \mathrm{U}_{\mathrm{n}+1} & =2^{\mathrm{n}}+\mathrm{U}_{\mathrm{n}}=2^{\mathrm{n}}+2^{\mathrm{n}-1}+\mathrm{U}_{\mathrm{n}-1} \\
& =2^{\mathrm{n}}+2^{\mathrm{n}-1}+2^{\mathrm{n}-2}+\mathrm{U}_{\mathrm{n}-2} \\
& =2^{\mathrm{n}}+2^{\mathrm{n}-1}+\ldots .+2^{1}+\mathrm{U}_{1}=2\left(\frac{2^{n}-1}{2-1}\right)+1=2^{n+1}-1
\end{aligned}
$$

(3)

$$
\begin{aligned}
& x_{51}=x_{50}+51^{2} \\
& =\frac{25(51)^{2}}{2}+51^{2}
\end{aligned}
$$

The Best Online Coaching for JEE•NEET \cdot CBSE Prep www.misostudy.com

$$
\begin{aligned}
& =25(51)^{2}+51 \\
& =51^{2} \times 26=51^{2} \times 13 \times 2 \\
& \quad \frac{x_{51}}{13 \times 51^{2}}=2
\end{aligned}
$$

10. (a) \rightarrow (r), (b) \rightarrow (s),(c) \rightarrow (p),(d) \rightarrow (q)
(1) m disticut books can be distributed among n children $=\mathrm{n}^{\mathrm{m}}$ ways

$$
\text { (2) }{ }^{m} C_{n} \times n!
$$

(3) Out of n persons, 2 are not selected
$\therefore \quad \mathrm{m}$ persons are to be
selected from $\mathrm{n}-2$ persons. But, $\mathrm{m} \geq \mathrm{n}>\mathrm{n}-2 \Rightarrow \mathrm{~m}>\mathrm{n}-2$
$\therefore \quad$ Not possible
(4) Each members of domain can be mapped in m ways \& domain has n members
$\therefore \quad$ No of maps $=\mathrm{m}^{\mathrm{n}}$

The Best Online Coaching for JEE \cdot NEET \cdot CBSE Prep www.misostudy.com

88929803804 | support@misostudy.com
Misostudy | 65-A, 2nd fl., Ompro Tower, Kalu Sarai, New Delhi 110016

