CRASH COURSE

JEE MAIN 2021-22

PHYSICS

* This is for the Sample Study Material. we provides all he suluy material to purchased user. Please check the course details on www.misostudy.com

JEE Main 2021-22 CRASH COURSE

JEE Main crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Main. It is a focused course for the JEE aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Main Exam.
© Important problem-solving and revision of all important topics with the last 7 years JEE Main analysis. AProviding problem-solving tips and tricks for the exam. © 100% JEE Main pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight. - Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. ©Boosts confidence in students so that they can score well.

SET-1

1. Force F is given in terms of time t and distance x by

$$
F=A \sin C t+B \cos D x
$$

Then the dimensions of $\frac{A}{B}$ and $\frac{C}{D}$ are given by
(a) $\left[\mathrm{MLT}^{-2}, \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
(b) $\left[\mathrm{MLT}^{-2}, \mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]$
(c) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}, \mathrm{M}^{0} \mathrm{LT}^{-1}\right]$
(d) $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}, \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
2. What are the dimensions of electrical resistance?
(a) $\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{I}^{2}$
(b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}\right]$
(c) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{2}\right]$
(d) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{I}^{-2}\right]$
3. From some instruments, current measured is $i=10.0 \mathrm{Amp}$, potential difference measured is $V=$ 100.0 V , length of wire is 31.4 cm , and diameter of wire is 2.00 mm (all in correct significant figures) will be (Use $\pi=3.14$)
(a) $1.00 \times 10^{-4} \Omega-\mathrm{m}$
(b) $1.0 \times 10^{-4} \Omega-\mathrm{m}$
(c) $1 \times 10^{-4} \Omega-\mathrm{m}$
(d) $1.000 \times 10^{-4} \Omega-\mathrm{m}$
4. The external and internal diameters of a hollow cylinder are measured to be $(4.23 \pm 0.01) \mathrm{cm}$ and $(3.89 \pm 0.01) \mathrm{cm}$. The thickness of the wall of the cylinder is
(a) $(0.34 \pm 0.02) \mathrm{cm}$
(b) $(0.17 \pm 0.02) \mathrm{cm}$
(c) $(0.17 \pm 0.01) \mathrm{cm}$
(d) $(0.34 \pm 0.01) \mathrm{cm}$
5. 1 cm on the main scale of a vernier callipers is divided into 10 equal. If 10 divisions of vernier coincide with B small divisions of main scale, then the least count of the vernier calliper is
(a) 0.01 cm
(b) 0.02 cm
(c) 0.05 cm
(d) 0.005 cm
6. A small metal sphere of radius r and density ρ falls from rest in a viscous liquid of density σ and coefficient of viscosity η. Due to friction heat is produced. The expression for the rate of production of heat when the sphere has acquired the terminal velocity is
(a) $\left[\frac{8 \pi g}{27 \eta}(\rho-\sigma)^{2}\right] r^{5}$
(c) $\left[\frac{8 \pi g^{2}}{27 \eta}(\rho-\sigma)\right] r^{5}$
(b) $\left[\frac{8 \pi g^{2}}{27 \eta}(\rho-\sigma)^{2}\right] r^{5}$
(d) $\left[\frac{8 \pi g^{2}}{27 \eta^{2}}(\rho-\sigma)\right] r^{5}$

SET-2

1. A body starts from rest and is uniformly accelerated for 30 s . The distance travelled in the first 10 s is x_{1}, next 10 s is x_{2} and the last 10 s is x_{3}. Then, $x_{1} ; x_{2} ; x_{3}$ is
(a) $1: 2: 4$
(c) $1: 3: 5$
(b) $1: 2: 5$
(d) $1: 3: 9$
2. A ball is dropped from the top of a building. They ball takes 0.5 s to fall past the 3 m length of a window some distance from the top of the building. If the speed of the ball at the top and at the bottom of the window are v_{T} and v_{B} respectively, then
(a) $v_{T}+v_{B}=12 \mathrm{~ms}^{-1}$
(b) $v_{T}-v_{B}=4.9 \mathrm{~ms}^{-1}$
(c) $v_{B}+v_{T}=1 \mathrm{~ms}^{-1}$
(d) $\frac{v_{B}}{v_{T}}=2$
3. A particle starts from rest with uniform acceleration a. Its velocity after n seconds is v. The displacement of the body in the last two seconds is
(a) $\frac{2 v(n-1)}{n}$
(c) $\frac{v(n+1)}{n}$
(b) $\frac{v(n-1)}{a}$
(d) $\frac{2 v(2 n+1)}{a}$
4. A person walks up a stationary escalator in time t_{1}. If he remains stationary on the escalator, then it can take him up in time t_{2}. How much time would it take him to walk up the moving escalator?
(a) $\frac{t_{1}+t_{2}}{2}$
(c) $\frac{t_{1} t_{2}}{t_{1}+t_{2}}$
(b) $\sqrt{t_{1} t_{2}}$
(d) $t_{1}+t_{2}$

Answer \& Solutions

SET-1

1. (c)

$$
\frac{A}{B}=M^{0} L^{0} T^{0} \quad \frac{C}{D}=\frac{X}{t}=L T^{-1}
$$

2. (b)
3. (a)
$\mathrm{s}=\frac{\pi \mathrm{D}^{2}}{4 \mathrm{~L}} \cdot \frac{\mathrm{~V}}{\mathrm{I}}$
$\Rightarrow \frac{3.14 \times\left(2 \times 10^{-3}\right)^{2}}{4(.314)}\left(\frac{100.0}{10.0}\right)$
$\mathrm{s}=1.00 \times 10^{-4} \Omega-\mathrm{m}$
4. (c)
$\left(\mathrm{R}_{1} \pm \Delta \mathrm{R}_{1}\right)=(2.11 \pm 0.005) \mathrm{cm}$
$\left(\mathrm{R}_{2} \pm \Delta \mathrm{R}_{2}\right)=(1.945 \pm 0.005) \mathrm{cm}$
Thickness $\mathrm{t}=\mathrm{R}_{1}-\mathrm{R}_{2}=0.17 \mathrm{~cm}$
$\Delta \mathrm{t}=\Delta \mathrm{R}_{1}+\Delta \mathrm{R}_{2}=0.01 \mathrm{~cm}$
$(\mathrm{t} \pm \Delta \mathrm{t})=(0.17 \pm 0.01) \mathrm{cm}$
5. (b)
$10 \mathrm{VSD}=8 \mathrm{MSD}$
$1 \mathrm{VSD}=0.8 \mathrm{MSD}$
$\mathrm{LC}=1 \mathrm{MSD}-1 \mathrm{VSD}$
$=1 \mathrm{MSD}-0.8 \mathrm{MSD}$
$=0.2 \mathrm{MSD}=0.2 \times \frac{1}{10} \mathrm{~cm}$
$=0.02 \mathrm{~cm}$
6. (b)

Rate of heat production $=-$ (Power of viscous force)
$\frac{\mathrm{dH}}{\mathrm{dt}}=$ (viscous force) (terminal velocity)
$=(6 \pi \eta r v)(v)$
$v=\frac{2}{9} \frac{(\mathrm{~s}-\sigma) \mathrm{r}^{2} \mathrm{~g}}{\eta}$

SET-2

1. (c)

$$
\begin{aligned}
& x_{1}=\frac{1}{2} a(10)^{2}=50 a \\
& x_{2}=\frac{1}{2} a(20)^{2}-\frac{1}{2}(a)(10)^{2}=150 a \\
& x_{3}=\frac{1}{2} a(30)^{2}-\frac{1}{2} a(20)^{2}=250 a \\
& x_{1}: x_{2}: x_{3}=1: 3: 5
\end{aligned}
$$

2. (a)
$v_{B}=v_{\mathrm{T}}+\mathrm{gt}$
$=v_{\mathrm{T}}+9.8 \times 0.5$
$=v_{\mathrm{B}}-v_{\mathrm{T}}=4.9$
$v_{B}^{2}-v_{T}^{2}=58.8$
Solving $v_{T}+v_{B}=12 \mathrm{~ms}^{-1}$
3. (a)
$v=a n \quad \Rightarrow a=v / n$
$s=\frac{1}{2} a(n) 2-\frac{1}{2} a(n-2)^{2}$
$=v / 2 n[4 n-4]$
$=\frac{2 v(n-1)}{n}$
4. (c)

Solution : Speed of man w.r.t. escalator $v_{\mathrm{mc}}=\mathrm{L} / \mathrm{t}_{1}$
speed of escalator $v_{c}=\mathrm{L} / \mathrm{t}_{2}$
speed of man w.r.t. grand
$v_{\mathrm{m}}=v_{\mathrm{mc}}+v_{\mathrm{c}}=\mathrm{L}\left[\frac{1}{t_{1}}+\frac{1}{t_{2}}\right]$
time $\mathbf{t}=\frac{L}{v_{m}}=\frac{t_{1} t_{2}}{t_{1}+t_{2}}$

CHEMISTRY

JEE Main 2021-22 CRASH COURSE

JEE Main crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Main. It is a focused course for the JEE aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Main Exam.
© Important problem-solving and revision of all important topics with the last 7 years JEE Main analysis. AProviding problem-solving tips and tricks for the exam. © 100% JEE Main pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight.

- Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. —Boosts confidence in students so that they can score well.

1. 5.85 g NaCl is dissolved in 1 L water. The number of ions of Na^{+}and Cl^{-}is 1 mL of this solution will be :
(a) 6.02×10^{19}
(b) 1.2×10^{22}
(c) 1.2×10^{20}
(d) 6.02×10^{20}
2. If mass of neutron is assumed to half of its original value, whereas that of proton is assumed to be twice of its original value then the atomic mass of ${ }_{6}^{14} C$ will be:
(a) same
(b) 14.28% more
(c) 14.28% less
(d) 28.56% less
3. The density of a liquid is $1.2 \mathrm{~g} / \mathrm{mL}$. There are 35 drops in 2 mL . The number of molecules in 1 drop is (molecular weight of liquid $=70$).
(a) $\frac{1.2}{35} N_{A}$
(b) $\left(\frac{1}{35}\right)^{2} N_{A}$
(c) $\frac{1.2}{(35)^{2}} N_{A}$
(d) $1.2 \mathrm{~N}_{\mathrm{A}}$
4. 26.8 gm of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ contains 12.6 gm of water. The value of ' n ' is :
(a) 1
(b) 10
(c) 6
(d) 7
5. How many moles of Na^{+}ions are in 20 mL of $0.4 \mathrm{M} \mathrm{Na} 3 \mathrm{PO}_{4}$?
(a) 0.008
(b) 0.024
(c) 0.05
(d) 0.20
6. In the reaction ;

$$
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \quad \mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}
$$

10 mL of mixture containing carbon monoxide and nitrogen required 7 mL oxygen to form CO_{2} and NO , on combustion. The volume of N_{2} in the mixture will be :
(a) $7 / 2 \mathrm{~mL}$
(b) $17 / 2 \mathrm{~mL}$
(c) 4 mL
(d) 7 mL
7. A mixture of ethane and ethene occupies 40 litre at 1.00 atm and at 400 K . The mixture reacts completely with 130 g of O_{2} to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Assuming ideal gas behaviour, calculate the mole fractions of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ in the mixture.
(a) $11.12,12.13$
(b) $18.34,34.36$
(c) $66.66,33.34$
(d) $35.34,31.34$
8. A mixture of HCOOH and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is heated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The gas produced is collected and on treating with KOH solution, the volume of the gas decreases by $1 / 6$ th. Calculate the molar ratio of the two acids in the original mixture.
(a) $4: 1$
(b) $3: 4$
(c) $4: 4$
(d) $2: 1$
9. 3.6 g mixture of sodium chloride and potassium chloride is dissolved in water. The solution is treated with excess of silver nitrate solution. 7.74 g of silver chloride is obtained. Find the percentage of sodium chloride and potassium chloride in the mixture.
(a) $52.2,48.2$
(b) $42.7,57.3$
(c) $58.2,65.4$
(d) $38.5,55.1$
10. A mixture in which the mole ration of H_{2} and O_{2} is $2: 1$, is used to prepare water by the reaction :

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

The total pressure in the container is 0.8 atm at $20^{\circ} \mathrm{C}$ before the reaction. Determine the final pressure at $120^{\circ} \mathrm{C}$ after the reaction, assuming 80% yield of water.
(a) 0.742
(b) 2.423
(c) 1.256
(d) 0.787

Answer \& Solutions

1. (c)

$$
\begin{aligned}
\text { No. of moles of } \mathrm{NaCl} & =\frac{5.85}{58.5}=0.1 \\
\therefore \quad & \rightarrow \\
\therefore \quad 1 \mathrm{NaCl} & \left(\mathrm{Na}^{+}+\mathrm{Cl}^{-}\right)=2 \text { ion } \\
& =2 \times 6.022 \times 10^{23} \text { ions } \\
& =\frac{1.2 \times 10^{23}}{1000} \text { ion } \\
& =1.2 \times 10^{20} \text { ions }
\end{aligned}
$$

2. (b)

$$
{ }_{6}^{14} \mathrm{C} \quad \rightarrow \quad \text { no of neutrons }=8
$$

$$
\text { no of Protons }=6
$$

new atomic mass $=\frac{1}{2} \times 8+2 \times 6$

$$
=4+12=16
$$

original atomic mass $=14$
$\%$ increase $=\frac{16-14}{14} \times 100=\frac{2}{14} \times 100$

$$
=\frac{100}{7}=14.28 \%
$$

3. (c)

$$
\begin{aligned}
& \begin{array}{c}
\delta=1.2 \mathrm{~g} / \mathrm{ml} \\
\text { volume of one drop }=\left(\frac{2}{35}\right) \\
\text { density }=\frac{\text { mass }}{\text { volume }} \\
1.2=\frac{W}{\left(\frac{2}{35}\right)} \\
1.2 \times\left(\frac{2}{35}\right)=W \\
\Rightarrow \\
\\
\qquad
\end{array} \\
& \text { no of molecules }=\frac{1.2 \times\left(\frac{2}{35}\right)=\mathrm{nM} \rightarrow 70}{(35)^{2}} \\
& \text { no of molecules }=\frac{1.2}{(35)^{2}} \times 6.022 \times 10^{23} \\
& \text { no } \times \mathrm{NA}
\end{aligned}
$$

4. (d)
molecular mass of $\mathrm{Na}_{2} \mathrm{So}_{4} \cdot \mathrm{nH}_{2} \mathrm{O}=(142+18 \mathrm{n})$
$(142+18 n) \mathrm{Na}_{2} \mathrm{So}_{4} \cdot \mathrm{nH}_{2} \mathrm{O} \rightarrow 18 \mathrm{n} \mathrm{H}_{2} \mathrm{O}$
$26.8 \mathrm{gm} \mathrm{Na} 2 \mathrm{So}_{4} . \mathrm{nH}_{2} \mathrm{O} \rightarrow \frac{18 \mathrm{n}}{(142+18 \mathrm{n})} \times 26.8$
Now,
$\frac{18 n}{(142+18 n)} \times 26.8=12.6$
$\Rightarrow \quad \frac{12.6}{26.8}=\frac{18 n}{(142+18 n)}$
$\Rightarrow \quad \mathrm{n}=\frac{142}{18} \approx 7.88 \approx 7$
5. (b)

1 mole $\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow 3$ mole Na^{+}
$\left(\frac{1}{125}\right)$ mole $\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow\left(\frac{3}{125}\right)$ mole of Na^{+}

$$
=0.024
$$

6. (c)

$$
\begin{array}{ll}
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} & \rightarrow \mathrm{CO} \\
x & (x / 2) \\
\mathrm{N}_{2}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{NO} \\
y & y \\
x+y \quad ; & \frac{x}{2}+y=7 \\
& \\
x+y=10 & \\
x+2 y=14 \\
x+2 y & \\
x+14 & \\
y=4 & y=4
\end{array}
$$

Volume of N_{2} in the mixture $=4$
7. (c)

$$
\begin{aligned}
& \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
& \frac{1 \times \mathrm{V}_{1}}{2+3}=\frac{1 \times 40}{400} \\
& \mathrm{~V}_{1}=\frac{2+3}{10}=27.3 \text { litre } \\
& \text { Mixture } \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}
\end{aligned}
$$

Let
the volume of $\mathrm{C}_{2} \mathrm{H}_{6}=x$ litre
the volume of $\mathrm{C} 2 \mathrm{H} 4=(27.3-x)$ litre
$\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+$ Energy
$1 \mathrm{vol} \quad \frac{7}{2} \mathrm{vol}$
$x \mathrm{vol} \quad \frac{7}{2} x \mathrm{vol}$
$\mathrm{C}_{2} \mathrm{H}_{4}+30_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+$ Energy
$1 \mathrm{vol} \quad 3 \mathrm{vol}$
$(27.3-x)$
$3(27.3-x)$

Total volume of oxygen required

$$
\frac{7}{2} x+3(27.3-x)
$$

Now,

$$
\text { mass of oxygen }=130
$$

$\therefore \quad\left\{\frac{7}{2} x+3(27.3-x)\right\} \times \frac{32}{22.4}=130$

$$
x=18.2
$$

mole fraction $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=\frac{18.2}{27.3} \times 100$

$$
\approx 66.66 \%
$$

mole fraction $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=100-66.66 \%$

$$
=33.34 \%
$$

8. (a)

(b)

Total no. of m oles of gas $=\mathrm{a}+\mathrm{b}+\mathrm{b}$

$$
=a+2 b
$$

on treating KOH solution, Co_{2} gas is absorbed

$$
\begin{array}{rlrl}
& & \mathrm{b} & =\frac{\mathrm{a}+2 \mathrm{~b}}{6} \\
\Rightarrow & & 6 \mathrm{~b} & =\mathrm{a}+2 \mathrm{~b} \\
\Rightarrow & \frac{\mathrm{a}}{\mathrm{~b}} & =\frac{4}{1}
\end{array}
$$

9. (b)

10. (d)

Now, $\quad \frac{2 x}{2 \mathrm{n}} \times 100=80$
$\frac{x}{\mathrm{n}}=\frac{80}{100}=0.8$
$x=0.8 \mathrm{n}$
moles of $\mathrm{H}_{2}=2 \mathrm{n}-2 x$
$=2 \mathrm{n}-2 \times 0.8 \mathrm{n}$
$=2 \mathrm{n}-1.6 \mathrm{n}$
$=0.4 \mathrm{n}$
moles of $\mathrm{O}_{2}=\mathrm{n}-x$
$=\mathrm{n}-0.8 \mathrm{n}$
$=0.2 \mathrm{n}$
moles of $\mathrm{H}_{2} \mathrm{O}=2 \times 0.8 \mathrm{n}$

$$
=1.6 \mathrm{n}
$$

Total no of moles at final $=0.4 n+0.2 n+1.6 n$
Total no of moles before the react $=2 n+n+0=3 n$
Now,

$$
\begin{align*}
& \mathrm{PV}=\mathrm{nRT} \\
& (0.8) \times \mathrm{V}=3 \mathrm{n} \times \mathrm{R} \times 293 \tag{i}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{P} \times \mathrm{V}=2.2 \mathrm{n} \times \mathrm{R} \times 393 \tag{ii}
\end{equation*}
$$

eq (i) divided eq (ii)

$$
\begin{aligned}
& \frac{0.8 \times \mathrm{V}}{\mathrm{P} \times \mathrm{V}}=\frac{3 \mathrm{n} \times \mathrm{R} \times 293}{2.2 \mathrm{n} \times \mathrm{R} \times 393} \\
& \Rightarrow \quad \frac{0.8}{\mathrm{P}}=\frac{3 \times 293}{2.2 \times 393}=\mathrm{P}=\frac{2.2 \times 393 \times 0.8}{3 \times 293} \\
& \mathrm{P}=0.787
\end{aligned}
$$

The Best Online Coaching for JEE - NEET \cdot CBSE Prep www.misostudy.com
(8929803804 | support@misostudy.com

MATHEMATICS

JEE Main 2021-22 CRASH COURSE

JEE Main crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Main. It is a focused course for the JEE aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Main Exam.
© Important problem-solving and revision of all important topics with the last 7 years JEE Main analysis. AProviding problem-solving tips and tricks for the exam. © 100% JEE Main pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight.

- Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. —Boosts confidence in students so that they can score well.

1. The distance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12} \quad \&$ the plane $x-y+z=16$ is
(a) 8
(b) $3 \sqrt{21}$
(c) 13
(d) $2 \sqrt{14}$
2. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=$ $y=z$ is
(a) $3 \sqrt{10}$
(b) $10 \sqrt{3}$
(c) $\frac{10}{\sqrt{3}}$
(d) $\frac{20}{3}$
3. If the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane $l x+m y-z=9$ them $l^{2}+m^{2}$ is equal to
(a) 26
(b) 18
(c) 5
(d) 2
4. If the image of the point $(1,-2,3)$ in the plane $2 x+3 y-4 z+22=0$ measured parallel to the line $\frac{x}{1}=\frac{y}{4}=\frac{z}{5}$ is Q them PQ is equal to
(a) $\sqrt{42}$
(b) $6 \sqrt{5}$
(c) $3 \sqrt{5}$
(d) $2 \sqrt{42}$
5.

(i) The length of the projection of the line segment joining the points $(5,-1,4)$ and $(4,-1,3)$ on the plane $x+y+z=7$ is
(a) $\frac{2}{\sqrt{3}}$
(c) $\frac{1}{3}$
(b) $\frac{2}{3}$
(d) $\frac{\sqrt{2}}{\sqrt{3}}$
(ii) Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is
(a) $x+2 y-2 z=0$
(b) $3 x+2 y-2 z=0$
(c) $x-2 y+z=0$
(d) $5 x=2 y-4 z=0$
6.
(i) Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{i}+\hat{j}+\hat{k} \& \vec{c}$ is a vector such that $\vec{a} \times \vec{c}+\vec{b}=\overrightarrow{0}$ \& $\vec{a} \cdot \vec{c}=4$ them $|\vec{c}|^{2}=$?
(ii) Let $\vec{a}=\hat{i}+\hat{j}+\sqrt{2} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+\sqrt{2} \hat{k} \& \vec{c}=5 \hat{i}+\hat{j}+\sqrt{2} \hat{k}$ be three vectors such that the projection of \vec{b} on \vec{a} is \vec{a}. If $\vec{a}+\vec{b}$ is perpendicular to \vec{c} then $|\vec{b}|=$?
7.
(i) Let A be a point on the line
$\vec{r}=(1-3 \mu) \hat{i}+(\mu-1) \hat{j}+(2+5 \mu) \hat{k} \& \mathrm{~B}(3,2,6)$ be a point in space then value of μ for which $\overrightarrow{A B}$ is parallel to the plane $\underset{\rightarrow}{x}-\underset{\rightarrow}{4 y}+3 z=1$ is
(ii) Let $\vec{a}=(\lambda-2) \vec{a}+\vec{b}$ and $\vec{\beta}=(4 \lambda-2) \vec{a}+3 \vec{b}$ be two given vectors where vectors \vec{a} \& \vec{b} are non - collinear. The value of λ for which $\vec{a} \& \vec{b}$ are collinear is
(i) Let $\vec{a}=\hat{i}+2 \hat{j}+4 \hat{k} \& \vec{b}=\hat{i}+\lambda \hat{j}+4 \hat{k}$ \& $\vec{c}=2 \hat{i}+4 \hat{j}+\left(\lambda^{2}-1\right) \hat{k}$ be coplanar vectors then, the non zero vector $\vec{a} \times \vec{c}$ is
(ii) Let $\sqrt{3} \hat{i}+\hat{j}, \hat{i}+\sqrt{3} \hat{j} \& \beta \hat{i}+(1-\beta) \hat{j}$ respectively be the position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with respect to origin O . If the distance of C from the bisector of the acute angle between $\mathrm{OA} \& \mathrm{OB}$ is $\frac{3}{\sqrt{2}}$ then sum of all possible values of β is
(iii) Let $\vec{a}, \vec{b}, \vec{c}$ be 3 unit vectors out of which vectors $\vec{b} \& \vec{c}$ are non parallel. If α and β are the angles which vector \vec{a} makes with vectors $|\alpha-\beta|$ is equal to :
9. Let $[x]$ denote the greatest integer less than or equal to x. Then,
$\lim _{x \rightarrow 0} \frac{\tan \left(\pi \sin ^{2} x\right)+(|x|-\sin (x[x]))^{2}}{x^{2}}$:
(a) Does not exist
(b) equals π
(c) equals $1+\pi$
(d) equals 0
10.
(i) $\lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^{4}}}-\sqrt{2}}{y^{4}}$ is :
(a) exists and equals $\frac{1}{4 \sqrt{2}}$
(b) exists and equals $\frac{1}{2 \sqrt{2}(\sqrt{2}+1)}$
(c) exists and equals $\frac{1}{2 \sqrt{2}}$
(d) Does not exist

Answer \& Solutions

1. (c)

Eqn. of line $: \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}=\lambda$
\therefore Any point on this line is

$$
(x, y, z)=(3 \lambda+2,4 \lambda-1,12 \lambda+2)
$$

Let $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ lies on the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=16$
$\Rightarrow(3 \lambda+2)-(4 \lambda-1)+(12 \lambda+2)=16$
$\Rightarrow \lambda=1$
\therefore Point of intersection of line \& plane is $(5,3,14)$
A
B
$(10,2)$
$\mathrm{AB}=\sqrt{16+9+144}=13$ units
2. (b)

Eq ${ }^{\mathrm{n}}$. of $\mathrm{L}_{1}: \quad \frac{x-1}{1}=\frac{y+5}{1}=\frac{z-9}{1}=\lambda$
$\therefore(x, y, z) \equiv(\lambda+1, \lambda-5, \lambda+9)$.
Let $(\lambda+1, \lambda-5, \lambda+9)$ lie on the plane

$$
\begin{gathered}
\therefore(\lambda+1)-(\lambda-5)+(\lambda+9)=5 \\
\lambda=-10
\end{gathered}
$$

$\therefore \mathrm{D} \equiv(-9,-15,-1)$
And, $\quad \mathrm{AD}=\sqrt{100+100+100}$

$$
=10 \sqrt{3} \text { unit }
$$

3. (d)

D.R of plane are $1, \mathrm{~m}-1$

Now, $\mathrm{A}(3,-2,4)$ lies on the plane

$$
\begin{align*}
& \therefore l(3)+\mathrm{m}(-2)-(-4)=9 \\
& 31-2 \mathrm{~cm}=5 \tag{1}\\
& \& \vec{n} \perp \vec{b} \Rightarrow \vec{n} \cdot \vec{b}=O \\
& \text { i.e. } 2 l-\mathrm{m}=3
\end{align*}
$$

Solving (1) \& (2) we get

$$
\therefore l^{2}+\mathrm{m}^{2}=2
$$

4. (d)

Eq . of line passing through P harting
D. $\mathrm{R} 1,4,5$ is $: \frac{x-1}{1}=\frac{y+2}{4}=\frac{z-3}{5}$
$\therefore(x, y, z) \equiv(\lambda+1,4 \lambda-2,5 \lambda+3)$ lies on the plane
$\therefore 2(\lambda+1)+3(4 \lambda-2)-4(5 \lambda+3)+22=0$

$$
\Rightarrow \lambda=1
$$

$\therefore \mathrm{D} \equiv(2,2,8)$
$\therefore \mathrm{PQ}=\mathrm{PD}+\mathrm{DQ}=2 \mathrm{PD}$

$$
2 \sqrt{1^{2}+4^{2}+5^{2}}=2 \sqrt{42}
$$

5. (i) \rightarrow (d) (ii) \rightarrow (c)

$$
\begin{aligned}
& \xrightarrow{\mathrm{A} \equiv}(5,-5,4) \mathrm{B} \equiv(4,-1,3) \\
& \overrightarrow{\mathrm{AB}}=(4 \hat{i}-\hat{j}-\hat{j}+3 \hat{k})-(5 \hat{i}-\hat{j}+4 \hat{k})=-\hat{i}+0 \hat{j}-\hat{k} \\
& \\
& \\
& (\hat{i}+\hat{j}| | \overrightarrow{j B} \mid \cos \theta \\
& \quad \Rightarrow \cos \theta=-(-\hat{j}+0 \hat{j}-\hat{k})=\sqrt{3} \sqrt{2} \cos \theta \\
& \quad \Rightarrow \sin \theta=1 / \sqrt{3}
\end{aligned}
$$

Projection $=\mathrm{AF}$
$\cos (90 \circ-\theta)=\frac{A F}{A B}$

$$
\begin{aligned}
& \Rightarrow \mathrm{AF}=\mathrm{AB} \cos \left(90^{\circ}-\theta\right) \\
& =|\overrightarrow{A B}| \sin \theta \\
& =\sqrt{2} \times \frac{1}{\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}}
\end{aligned}
$$

(ii)

Now, $\mathrm{P}_{1} \xrightarrow{\perp} \mathrm{P}_{2}$
$\Rightarrow \xrightarrow{n_{1}} \perp \overrightarrow{n_{2}}$
\& $\overrightarrow{n_{1}} \perp(2 \hat{i}+3 \hat{j}+4 \hat{k}) \& \overrightarrow{n_{2}} \perp(4 \hat{i}+2 \hat{j}+3 \hat{k})$
$\& \overrightarrow{n_{2}} \perp(3 \hat{i}+4 \hat{j}+2 \hat{k}) \overrightarrow{n_{2}} \perp(4 \hat{i}+2 \hat{j}+3 \hat{k})$
$\Rightarrow \overrightarrow{n_{2}}=(3 \hat{i}+4 \hat{j}+2 \hat{k}) \times(4 \hat{i}+2 \hat{j}+3 \hat{k})$
$\Rightarrow \overrightarrow{n_{2}}=8 \hat{i}-\hat{j}-10 \hat{k}$
$\& \overrightarrow{n_{1}}=\overrightarrow{n_{2}}=0 \Rightarrow 8 a-b 10 c=0$
$\& \overrightarrow{n_{1}} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=0 \Rightarrow 2 \mathrm{a}+3 \mathrm{~b}+4 \mathrm{c}=0$
By (1) \& (2),

$$
\frac{a}{1}=\frac{b}{2}=\frac{c}{1}
$$

$\therefore \mathrm{Eq}^{\mathrm{n}}$ of plane is $x-2 \mathrm{y}+\mathrm{z}=0$
6. (i) $\rightarrow 19 / 2$ (ii) $\rightarrow 6$
(i) $\frac{\vec{a}}{\vec{\ell}}=\begin{gathered}\hat{i}-\hat{j} \\ \hat{i}+\hat{j}+\hat{k}\end{gathered}$
$(\vec{a} \times \vec{c})+\vec{b}=\vec{O}$
$\Rightarrow \vec{a} \times \vec{c}=\overrightarrow{-b}$
$(\vec{a} \times \vec{c}) \times \vec{a}=(-\vec{b}) \times \vec{a}$
$(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{c} \cdot \vec{a}) \vec{a}=-(\vec{b} \times \vec{a})$

$$
\begin{aligned}
& |\vec{a}|^{2} \vec{c}-4 \vec{a}=\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right| \\
& =-\hat{i}-\hat{j}+2 \hat{k} \\
& 2 \vec{c}-4 \vec{a}=(-\hat{i}-\hat{j}+2 \hat{k}) \\
& 2 \vec{c}=(-\hat{i}-\hat{j}+2 \hat{k})+(4 \hat{i}-4 \hat{j}+0 \hat{k}) \\
& 2 \vec{c}=3 \hat{i}-5 \hat{j}+2 \hat{k}
\end{aligned}
$$

$$
\begin{gathered}
\vec{c}=\frac{3}{2} \hat{i}-\frac{5}{2} \hat{j}+\frac{2}{2} \hat{k} \\
|\vec{c}|^{2}=(3 / 2)^{2}+\left(\frac{-5}{2}\right)^{2}+(1)^{2} \\
=19 / 2
\end{gathered}
$$

(ii)

$\cos \theta=\frac{A f}{|\vec{\ell}|} \Rightarrow A f=|\vec{\ell}| \cos \theta=\frac{|\vec{a}| \vec{a} \cdot \vec{a}}{|\vec{a}||\vec{b}|}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$
$\therefore \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=|\vec{a}|$
So, $\vec{a} \cdot \vec{b}=|\vec{a}|^{2}$
$\therefore \mathrm{b}_{1}+\mathrm{b}_{2}+2=4$

$$
\begin{array}{ll}
& \mathrm{b}_{1}+\mathrm{b}_{2}=2 \\
\vec{a}+\vec{b}= & \left.\left(1+b_{1}\right) \hat{i}+\left(1+b_{2}\right) \hat{j}+(2 \sqrt{2}) \hat{k}(\vec{a}+\vec{a}) \cdot \vec{a} \mid=2\right) \\
& \Rightarrow 12+4 \mathrm{~b}_{1}=0 \\
& \Rightarrow \mathrm{~b}_{1}=-3 \\
& \vec{a}=-3 \hat{i}+5 \hat{j}+\sqrt{2} \hat{k} \\
\therefore \quad & |\vec{a}|=\sqrt{9+25+2}=\sqrt{36}=6
\end{array}
$$

7. (i) $\rightarrow \mu=1 / 4$. (ii) $\rightarrow \lambda=-4$.
(i)

$(-3 \mu+1, \mu-1,5 \mu+2) \mathrm{A}$ $\xrightarrow[(3,2,6)]{ }$

$$
\begin{align*}
& \overrightarrow{\mathrm{n}} \perp \overrightarrow{\mathrm{AB}} \tag{1}\\
\Rightarrow \quad & \overrightarrow{\mathrm{n}} \cdot \overrightarrow{\mathrm{AB}}=\mathrm{O} \\
\Rightarrow \quad & (\hat{i}-4 \hat{j}+3 \hat{k}) . \quad \overrightarrow{\mathrm{AB}}=\mathrm{O}
\end{align*}
$$

Let $\vec{r}=(1-4 \mu) \hat{i}+(\mu-2) \hat{j}+(2+\mu) \hat{k}$

$$
\underbrace{(\hat{i}-\hat{j}+2 \hat{k})}_{a}+\mu \underbrace{(-3 \hat{i}+\hat{j} 5 \hat{k})}_{b}
$$

$$
\mathrm{L}: \frac{x-1}{-3}=\frac{y+1}{1}=\frac{z-2}{5}=\mu
$$

$$
(\mathrm{x}, \mathrm{y}, \mathrm{z})=(-3 \mu+1, \mu-1,5 \mu+2)
$$

$\therefore \overrightarrow{\mathrm{AB}}=(3 \mu+2) \hat{i}+(3-\mu) \hat{j}+(4-5 \mu) \hat{k}$

$$
\mathrm{By}(1)
$$

$$
\mu=1 / 4
$$

(ii) \exists constant x;
8. (i) $\rightarrow 10 \hat{i}+5 \hat{j}$ (ii) $\rightarrow 2 \beta=-2$ i.e. $\beta=1$. (iii) $\rightarrow \therefore|\alpha-\theta|=|\pi| 2-\pi|3|=30^{\circ}$
(i) $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$

The Best Online Coaching for JEE - NEET - CBSE Prep

$$
\begin{align*}
& \left|\begin{array}{ccc}
1 & 2 & 4 \\
1 & \lambda & 4 \\
2 & 4 & \lambda^{2-1}
\end{array}\right|=0 \\
& \Rightarrow \lambda^{3}-2 \lambda^{2-} 9 \lambda+18=0 \tag{i}\\
& \lambda-2 \text { is a factor of } \\
& \text { (i) } \\
& \therefore \lambda^{3}-2 \lambda^{2}-9 \lambda+18(\lambda-2)\left(\lambda^{2}-9\right)=0 \\
& \text { i.e. }(\lambda-2)(\lambda-3)(\lambda+3)=0 \\
& \text { Values of } \lambda \text { are } 2,3,-3 \\
& \vec{\rightarrow}=2 \vec{i}+4 \hat{j}+3 \hat{k} \text { or } \\
& \vec{c}=2 \vec{i}+4 \hat{j}+8 \hat{k} \\
& \underset{\rightarrow}{=} 2 \vec{a} \\
& \therefore \vec{a} \& \underset{\rightarrow}{\vec{c}} \text { are colinear vectors } \\
& \Rightarrow \vec{a} \times \vec{c}=\overrightarrow{0} \\
& \therefore \lambda \neq 3,-3 \text {. } \\
& \lambda=2 \\
& \& \vec{c}=2 \hat{i}+4 \hat{j}+3 \hat{k} \\
& \therefore \vec{a} \times \vec{c}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 4 \\
2 & 4 & 3
\end{array}\right|=-10 \hat{i}+5 \hat{j}
\end{align*}
$$

$$
\begin{aligned}
& (\lambda-2) \vec{a}=x+\vec{b}=x((4 \lambda-2) x) \vec{a} \vec{a}+3 x \vec{a} \vec{b} \\
& =((4 \lambda-2) x) \vec{a}+3 x \vec{b} \\
& \Rightarrow \underbrace{((\lambda-2)-(4 \lambda-2) x) \vec{a}}_{k_{1}}+\underbrace{(1-3 x)}_{k_{2}} \vec{b}=0 \\
& \Rightarrow 1-3 x=0 \Rightarrow 1=x \text { or } x=1 / 3 \\
& \text { \& } \quad \lambda-2-(4 \lambda-2) x=0 \\
& \Rightarrow \lambda=-4 \text {. }
\end{aligned}
$$

(ii)

$\frac{3}{\sqrt{2}}=\mathrm{d}=\frac{|1-\beta-\beta|}{\sqrt{1^{2}+1^{2}}}$
$\Rightarrow|1-2 \beta|=3$
$\Rightarrow 1-2 \beta= \pm 3$
$\therefore 1 \pm 3=2 \beta$
$\therefore 2 \beta-4 \Rightarrow \beta=2$

$$
\begin{aligned}
& \text { or } \\
& 2 \beta=-2 \text { i.e. } \beta=1 .
\end{aligned}
$$

(iii)

$$
\begin{aligned}
& \quad \vec{a} \times(\vec{b} \times \vec{c})=1 / 2 \vec{b} \\
& (\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=1 / 2 \vec{b} \\
& \left((\vec{a} \cdot \vec{c})-\frac{1}{2}\right) \vec{b}-(\vec{a} \cdot \vec{c}) \vec{c}=1 / 2 \vec{b} \\
& \text { As } \vec{a} \& \vec{c} \text { are non collinear } \\
& \Rightarrow \vec{a} \cdot \vec{c}-1 / 2=0 \quad \& \vec{a} \cdot \vec{b}=0 \\
& \vec{a} \cdot \vec{c}==1 / 2 \quad \& \quad \vec{a} \perp \vec{b}=\alpha=90^{\circ}=\pi / 2 \\
& |\vec{a}||\vec{c}| \cos \theta=1 / 2 \quad \& \quad \alpha=\pi / 2 \\
& \Rightarrow \\
& \therefore \quad|\alpha-\theta|=60 \circ=\pi / 3 \quad \& \quad \alpha=\pi / 2 \\
& \therefore|\pi| 2-\pi|3|=30^{\circ}
\end{aligned}
$$

9. (a)

$$
\text { RHL : } \lim _{h \rightarrow 0} \frac{\tan \left(\pi \sin ^{2}(h)\right)+(h+0)^{2}}{h^{2}}
$$

i.e $\lim _{h \rightarrow 0}\left(\frac{\tan \left(\pi / \sin ^{2}(h)\right) \times \sin ^{2} h}{\pi \sin ^{2} h \times h^{2}}\right)+\lim _{h \rightarrow 0}(1)$
ie. $\left(\lim _{h \rightarrow 0} \frac{\tan \left(\pi \sin ^{2} h\right)}{\pi \sin ^{2} h}\right) \pi \lim \left(\frac{\sin h}{h}\right)^{2}+1$
ie

$$
\pi+1
$$

LHL : $\lim _{h \rightarrow 0} \frac{\tan \left(\sin ^{2}(-h)\right)+(|-h|-\sin (-h[-h]))^{2}}{(-h)^{2}}$
(As $\mathrm{h} \rightarrow 0 \& \mathrm{~h}>0 \&-\mathrm{h}<0 \therefore[-\mathrm{h}]=-1$)
$=\lim _{h \rightarrow 0}\left(\frac{\tan \left(\pi \sin ^{2} h\right)}{h}+\left(\frac{h-\sin h}{h}\right)^{2}\right)$
$(1 \times \pi)+(1+1-2)=\pi$
\therefore LHL \neq RHL
10. (a)
(i) : $x \rightarrow 0$

$$
\begin{gathered}
\begin{array}{c}
(1+x)^{\mathrm{n}}=1 \mathrm{n} x \\
\sqrt{1+y^{4}}=\left(1+y^{4}\right)^{1 / 2} \\
=1+\frac{1}{2} y^{4}
\end{array} \\
\therefore \lim _{y \rightarrow 0} \frac{\sqrt{1+1+\frac{y^{4}}{2}}-\sqrt{2}}{y^{4}} \\
=\lim _{y \rightarrow 0} \frac{\sqrt{2+\frac{y^{4}}{2}}-\sqrt{2}}{y^{4}} \\
=\lim _{y \rightarrow 0} \frac{\sqrt{2}\left(\left(1+\frac{y^{4}}{4}\right)^{1 / 2}-1\right)}{y^{4}} \\
=\lim _{y \rightarrow 0} \frac{\sqrt{2}\left(1+\frac{1}{2} y \frac{4}{4}-1\right)}{y^{4}}=\frac{1}{4 \sqrt{2}}
\end{gathered}
$$

