## CRASH COURSE

## JEE MAIN 2021-22

## PHYSICS

* This is for the Sample Study Material. we provides all he suluy material to purchased user. Please check the course details on www.misostudy.com


## JEE Main 2021-22 CRASH COURSE

JEE Main crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Main. It is a focused course for the JEE aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Main Exam.
© Important problem-solving and revision of all important topics with the last 7 years JEE Main analysis. AProviding problem-solving tips and tricks for the exam. © $100 \%$ JEE Main pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight. - Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. ©Boosts confidence in students so that they can score well.

## SET-1

1. Force $F$ is given in terms of time $t$ and distance $x$ by

$$
F=A \sin C t+B \cos D x
$$

Then the dimensions of $\frac{A}{B}$ and $\frac{C}{D}$ are given by
(a) $\left[\mathrm{MLT}^{-2}, \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
(b) $\left[\mathrm{MLT}^{-2}, \mathrm{M}^{0} \mathrm{~L}^{-1} \mathrm{~T}^{0}\right]$
(c) $\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}, \mathrm{M}^{0} \mathrm{LT}^{-1}\right]$
(d) $\left[\mathrm{M}^{0} \mathrm{LT}^{-1}, \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$
2. What are the dimensions of electrical resistance?
(a) $\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{I}^{2}$
(b) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}\right]$
(c) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{2}\right]$
(d) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{I}^{-2}\right]$
3. From some instruments, current measured is $i=10.0 \mathrm{Amp}$, potential difference measured is $V=$ 100.0 V , length of wire is 31.4 cm , and diameter of wire is 2.00 mm (all in correct significant figures) will be (Use $\pi=3.14$ )
(a) $1.00 \times 10^{-4} \Omega-\mathrm{m}$
(b) $1.0 \times 10^{-4} \Omega-\mathrm{m}$
(c) $1 \times 10^{-4} \Omega-\mathrm{m}$
(d) $1.000 \times 10^{-4} \Omega-\mathrm{m}$
4. The external and internal diameters of a hollow cylinder are measured to be $(4.23 \pm 0.01) \mathrm{cm}$ and $(3.89 \pm 0.01) \mathrm{cm}$. The thickness of the wall of the cylinder is
(a) $(0.34 \pm 0.02) \mathrm{cm}$
(b) $(0.17 \pm 0.02) \mathrm{cm}$
(c) $(0.17 \pm 0.01) \mathrm{cm}$
(d) $(0.34 \pm 0.01) \mathrm{cm}$
5. 1 cm on the main scale of a vernier callipers is divided into 10 equal. If 10 divisions of vernier coincide with $B$ small divisions of main scale, then the least count of the vernier calliper is
(a) 0.01 cm
(b) 0.02 cm
(c) 0.05 cm
(d) 0.005 cm
6. A small metal sphere of radius $r$ and density $\rho$ falls from rest in a viscous liquid of density $\sigma$ and coefficient of viscosity $\eta$. Due to friction heat is produced. The expression for the rate of production of heat when the sphere has acquired the terminal velocity is
(a) $\left[\frac{8 \pi g}{27 \eta}(\rho-\sigma)^{2}\right] r^{5}$
(c) $\left[\frac{8 \pi g^{2}}{27 \eta}(\rho-\sigma)\right] r^{5}$
(b) $\left[\frac{8 \pi g^{2}}{27 \eta}(\rho-\sigma)^{2}\right] r^{5}$
(d) $\left[\frac{8 \pi g^{2}}{27 \eta^{2}}(\rho-\sigma)\right] r^{5}$

## SET-2

1. A body starts from rest and is uniformly accelerated for 30 s . The distance travelled in the first 10 s is $x_{1}$, next 10 s is $x_{2}$ and the last 10 s is $x_{3}$. Then, $x_{1} ; x_{2} ; x_{3}$ is
(a) $1: 2: 4$
(c) $1: 3: 5$
(b) $1: 2: 5$
(d) $1: 3: 9$
2. A ball is dropped from the top of a building. They ball takes 0.5 s to fall past the 3 m length of a window some distance from the top of the building. If the speed of the ball at the top and at the bottom of the window are $v_{T}$ and $v_{B}$ respectively, then
(a) $v_{T}+v_{B}=12 \mathrm{~ms}^{-1}$
(b) $v_{T}-v_{B}=4.9 \mathrm{~ms}^{-1}$
(c) $v_{B}+v_{T}=1 \mathrm{~ms}^{-1}$
(d) $\frac{v_{B}}{v_{T}}=2$
3. A particle starts from rest with uniform acceleration $a$. Its velocity after $n$ seconds is $v$. The displacement of the body in the last two seconds is
(a) $\frac{2 v(n-1)}{n}$
(c) $\frac{v(n+1)}{n}$
(b) $\frac{v(n-1)}{a}$
(d) $\frac{2 v(2 n+1)}{a}$
4. A person walks up a stationary escalator in time $t_{1}$. If he remains stationary on the escalator, then it can take him up in time $t_{2}$. How much time would it take him to walk up the moving escalator?
(a) $\frac{t_{1}+t_{2}}{2}$
(c) $\frac{t_{1} t_{2}}{t_{1}+t_{2}}$
(b) $\sqrt{t_{1} t_{2}}$
(d) $t_{1}+t_{2}$

## Answer \& Solutions

## SET-1

1. (c)

$$
\frac{A}{B}=M^{0} L^{0} T^{0} \quad \frac{C}{D}=\frac{X}{t}=L T^{-1}
$$

2. (b)
3. (a)
$\mathrm{s}=\frac{\pi \mathrm{D}^{2}}{4 \mathrm{~L}} \cdot \frac{\mathrm{~V}}{\mathrm{I}}$
$\Rightarrow \frac{3.14 \times\left(2 \times 10^{-3}\right)^{2}}{4(.314)}\left(\frac{100.0}{10.0}\right)$
$\mathrm{s}=1.00 \times 10^{-4} \Omega-\mathrm{m}$
4. (c)
$\left(\mathrm{R}_{1} \pm \Delta \mathrm{R}_{1}\right)=(2.11 \pm 0.005) \mathrm{cm}$
$\left(\mathrm{R}_{2} \pm \Delta \mathrm{R}_{2}\right)=(1.945 \pm 0.005) \mathrm{cm}$
Thickness $\mathrm{t}=\mathrm{R}_{1}-\mathrm{R}_{2}=0.17 \mathrm{~cm}$
$\Delta \mathrm{t}=\Delta \mathrm{R}_{1}+\Delta \mathrm{R}_{2}=0.01 \mathrm{~cm}$
$(\mathrm{t} \pm \Delta \mathrm{t})=(0.17 \pm 0.01) \mathrm{cm}$
5. (b)
$10 \mathrm{VSD}=8 \mathrm{MSD}$
$1 \mathrm{VSD}=0.8 \mathrm{MSD}$
$\mathrm{LC}=1 \mathrm{MSD}-1 \mathrm{VSD}$
$=1 \mathrm{MSD}-0.8 \mathrm{MSD}$
$=0.2 \mathrm{MSD}=0.2 \times \frac{1}{10} \mathrm{~cm}$
$=0.02 \mathrm{~cm}$
6. (b)

Rate of heat production $=-$ (Power of viscous force)
$\frac{\mathrm{dH}}{\mathrm{dt}}=$ (viscous force) (terminal velocity)
$=(6 \pi \eta \mathrm{rv})(v)$
$v=\frac{2}{9} \frac{(\mathrm{~s}-\sigma) \mathrm{r}^{2} \mathrm{~g}}{\eta}$

## SET-2

1. (c)

$$
\begin{aligned}
& x_{1}=\frac{1}{2} a(10)^{2}=50 a \\
& x_{2}=\frac{1}{2} a(20)^{2}-\frac{1}{2}(a)(10)^{2}=150 a \\
& x_{3}=\frac{1}{2} a(30)^{2}-\frac{1}{2} a(20)^{2}=250 a \\
& x_{1}: x_{2}: x_{3}=1: 3: 5
\end{aligned}
$$

2. (a)
$v_{B}=v_{\mathrm{T}}+\mathrm{gt}$
$=v_{\mathrm{T}}+9.8 \times 0.5$
$=v_{\mathrm{B}}-v_{\mathrm{T}}=4.9$
$v_{B}^{2}-v_{T}^{2}=58.8$
Solving $v_{T}+v_{B}=12 \mathrm{~ms}^{-1}$
3. (a)
$v=a n \quad \Rightarrow a=v / n$
$s=\frac{1}{2} a(n) 2-\frac{1}{2} a(n-2)^{2}$
$=v / 2 n[4 n-4]$
$=\frac{2 v(n-1)}{n}$
4. (c)

Solution : Speed of man w.r.t. escalator $v_{\mathrm{mc}}=\mathrm{L} / \mathrm{t}_{1}$
speed of escalator $v_{c}=\mathrm{L} / \mathrm{t}_{2}$
speed of man w.r.t. grand
$v_{\mathrm{m}}=v_{\mathrm{mc}}+v_{\mathrm{c}}=\mathrm{L}\left[\frac{1}{t_{1}}+\frac{1}{t_{2}}\right]$
time $\mathrm{t}=\frac{L}{v_{m}}=\frac{t_{1} t_{2}}{t_{1}+t_{2}}$

## CHEMISTRY

## JEE Main 2021-22 CRASH COURSE

JEE Main crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Main. It is a focused course for the JEE aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Main Exam.
© Important problem-solving and revision of all important topics with the last 7 years JEE Main analysis. AProviding problem-solving tips and tricks for the exam. © $100 \%$ JEE Main pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight.

- Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. —Boosts confidence in students so that they can score well.

1. 5.85 g NaCl is dissolved in 1 L water. The number of ions of $\mathrm{Na}^{+}$and $\mathrm{Cl}^{-}$is 1 mL of this solution will be :
(a) $6.02 \times 10^{19}$
(b) $1.2 \times 10^{22}$
(c) $1.2 \times 10^{20}$
(d) $6.02 \times 10^{20}$
2. If mass of neutron is assumed to half of its original value, whereas that of proton is assumed to be twice of its original value then the atomic mass of ${ }_{6}^{14} C$ will be:
(a) same
(b) $14.28 \%$ more
(c) $14.28 \%$ less
(d) $28.56 \%$ less
3. The density of a liquid is $1.2 \mathrm{~g} / \mathrm{mL}$. There are 35 drops in 2 mL . The number of molecules in 1 drop is (molecular weight of liquid $=70$ ).
(a) $\frac{1.2}{35} N_{A}$
(b) $\left(\frac{1}{35}\right)^{2} N_{A}$
(c) $\frac{1.2}{(35)^{2}} N_{A}$
(d) $1.2 \mathrm{~N}_{\mathrm{A}}$
4. 26.8 gm of $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot n \mathrm{H}_{2} \mathrm{O}$ contains 12.6 gm of water. The value of ' $n$ ' is :
(a) 1
(b) 10
(c) 6
(d) 7
5. How many moles of $\mathrm{Na}^{+}$ions are in 20 mL of $0.4 \mathrm{M} \mathrm{Na} 3 \mathrm{PO}_{4}$ ?
(a) 0.008
(b) 0.024
(c) 0.05
(d) 0.20
6. In the reaction ;

$$
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \quad \mathrm{N}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}
$$

10 mL of mixture containing carbon monoxide and nitrogen required 7 mL oxygen to form $\mathrm{CO}_{2}$ and NO , on combustion. The volume of $\mathrm{N}_{2}$ in the mixture will be :
(a) $7 / 2 \mathrm{~mL}$
(b) $17 / 2 \mathrm{~mL}$
(c) 4 mL
(d) 7 mL
7. A mixture of ethane and ethene occupies 40 litre at 1.00 atm and at 400 K . The mixture reacts completely with 130 g of $\mathrm{O}_{2}$ to produce $\mathrm{CO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$. Assuming ideal gas behaviour, calculate the mole fractions of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ in the mixture.
(a) $11.12,12.13$
(b) $18.34,34.36$
(c) $66.66,33.34$
(d) $35.34,31.34$
8. A mixture of HCOOH and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is heated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The gas produced is collected and on treating with KOH solution, the volume of the gas decreases by $1 / 6$ th. Calculate the molar ratio of the two acids in the original mixture.
(a) $4: 1$
(b) $3: 4$
(c) $4: 4$
(d) $2: 1$
9. 3.6 g mixture of sodium chloride and potassium chloride is dissolved in water. The solution is treated with excess of silver nitrate solution. 7.74 g of silver chloride is obtained. Find the percentage of sodium chloride and potassium chloride in the mixture.
(a) $52.2,48.2$
(b) $42.7,57.3$
(c) $58.2,65.4$
(d) $38.5,55.1$
10. A mixture in which the mole ration of $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ is $2: 1$, is used to prepare water by the reaction :

$$
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)
$$

The total pressure in the container is 0.8 atm at $20^{\circ} \mathrm{C}$ before the reaction. Determine the final pressure at $120^{\circ} \mathrm{C}$ after the reaction, assuming $80 \%$ yield of water.
(a) 0.742
(b) 2.423
(c) 1.256
(d) 0.787

## Answer \& Solutions

1. (c)

$$
\begin{array}{rll}
\text { No. of moles of } \mathrm{NaCl} & =\frac{5.85}{58.5}=0.1 \\
& \rightarrow & \left(\mathrm{Na}^{+}+\mathrm{Cl}^{-}\right)=2 \text { ion } \\
\therefore \quad 1 \mathrm{NaCl} & \rightarrow & 2 \times 6.022 \times 10^{23} \text { ions } \\
1 \text { mole } \mathrm{NaCl} & \rightarrow \frac{1.2 \times 10^{23}}{1000} \mathrm{ion} \\
& = & 1.2 \times 10^{20} \text { ions }
\end{array}
$$

2. (b)

$$
{ }_{6}^{14} \mathrm{C} \quad \rightarrow \quad \text { no of neutrons }=8
$$

$$
\text { no of Protons }=6
$$

new atomic mass $=\frac{1}{2} \times 8+2 \times 6$

$$
=4+12=16
$$

original atomic mass $=14$
$\%$ increase $=\frac{16-14}{14} \times 100=\frac{2}{14} \times 100$

$$
=\frac{100}{7}=14.28 \%
$$

3. (c)

$$
\begin{aligned}
& \begin{array}{c}
\delta=1.2 \mathrm{~g} / \mathrm{ml} \\
\text { volume of one drop }=\left(\frac{2}{35}\right) \\
\text { density }=\frac{\text { mass }}{\text { volume }} \\
1.2=\frac{W}{\left(\frac{2}{35}\right)} \\
1.2 \times\left(\frac{2}{35}\right)=W \\
\Rightarrow \\
\\
\qquad
\end{array} \\
& \text { no of molecules }=\frac{1.2 \times\left(\frac{2}{35}\right)=\mathrm{nM} \rightarrow 70}{(35)^{2}} \\
& \text { no of molecules }=\frac{1.2}{(35)^{2}} \times 6.022 \times 10^{23} \\
& \text { no } \times \mathrm{NA}
\end{aligned}
$$

4. (d)
molecular mass of $\mathrm{Na}_{2} \mathrm{So}_{4} \cdot \mathrm{nH}_{2} \mathrm{O}=(142+18 \mathrm{n})$
$(142+18 n) \mathrm{Na}_{2} \mathrm{So}_{4} \cdot \mathrm{nH}_{2} \mathrm{O} \rightarrow 18 \mathrm{n} \mathrm{H}_{2} \mathrm{O}$
$26.8 \mathrm{gm} \mathrm{Na} 2 \mathrm{So}_{4} . \mathrm{nH}_{2} \mathrm{O} \rightarrow \frac{18 \mathrm{n}}{(142+18 \mathrm{n})} \times 26.8$
Now,
$\frac{18 n}{(142+18 n)} \times 26.8=12.6$
$\Rightarrow \quad \frac{12.6}{26.8}=\frac{18 n}{(142+18 n)}$
$\Rightarrow \quad \mathrm{n}=\frac{142}{18} \approx 7.88 \approx 7$
5. (b)

1 mole $\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow 3$ mole $\mathrm{Na}^{+}$
$\left(\frac{1}{125}\right)$ mole $\mathrm{Na}_{3} \mathrm{PO}_{4} \rightarrow\left(\frac{3}{125}\right)$ mole of $\mathrm{Na}^{+}$

$$
=0.024
$$

6. (c)

$$
\begin{array}{ll}
\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} & \rightarrow \mathrm{CO} \\
x & (x / 2) \\
\mathrm{N}_{2}+\mathrm{O}_{2} & \rightarrow 2 \mathrm{NO} \\
y & y \\
x+y \quad ; & \frac{x}{2}+y=7 \\
& \\
x+y=10 & \\
x+2 y=14 \\
x+2 y & \\
x+14 & \\
y=4 & y=4
\end{array}
$$

Volume of $\mathrm{N}_{2}$ in the mixture $=4$
7. (c)

$$
\begin{aligned}
& \frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}} \\
& \frac{1 \times \mathrm{V}_{1}}{2+3}=\frac{1 \times 40}{400} \\
& \mathrm{~V}_{1}=\frac{2+3}{10}=27.3 \text { litre } \\
& \text { Mixture } \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}
\end{aligned}
$$

Let
the volume of $\mathrm{C}_{2} \mathrm{H}_{6}=x$ litre
the volume of $\mathrm{C} 2 \mathrm{H} 4=(27.3-x)$ litre
$\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}+$ Energy
$1 \mathrm{vol} \quad \frac{7}{2} \mathrm{vol}$
$x \mathrm{vol} \quad \frac{7}{2} x \mathrm{vol}$
$\mathrm{C}_{2} \mathrm{H}_{4}+30_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+$ Energy
$1 \mathrm{vol} \quad 3 \mathrm{vol}$
$(27.3-x)$
$3(27.3-x)$

Total volume of oxygen required

$$
\frac{7}{2} x+3(27.3-x)
$$

Now,

$$
\text { mass of oxygen }=130
$$

$\therefore \quad\left\{\frac{7}{2} x+3(27.3-x)\right\} \times \frac{32}{22.4}=130$

$$
x=18.2
$$

mole fraction $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=\frac{18.2}{27.3} \times 100$

$$
\approx 66.66 \%
$$

mole fraction $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=100-66.66 \%$

$$
=33.34 \%
$$

8. (a)

(b)

Total no. of m oles of gas $=\mathrm{a}+\mathrm{b}+\mathrm{b}$

$$
=a+2 b
$$

on treating KOH solution, $\mathrm{Co}_{2}$ gas is absorbed

$$
\begin{array}{rlrl} 
& & \mathrm{b} & =\frac{\mathrm{a}+2 \mathrm{~b}}{6} \\
\Rightarrow & & 6 \mathrm{~b} & =\mathrm{a}+2 \mathrm{~b} \\
\Rightarrow & \frac{\mathrm{a}}{\mathrm{~b}} & =\frac{4}{1}
\end{array}
$$

9. (b)


10. (d)


Now, $\quad \frac{2 x}{2 \mathrm{n}} \times 100=80$
$\frac{x}{\mathrm{n}}=\frac{80}{100}=0.8$

$$
x=0.8 \mathrm{n}
$$

moles of $\mathrm{H}_{2}=2 \mathrm{n}-2 x$

$$
=2 \mathrm{n}-2 \times 0.8 \mathrm{n}
$$

$$
=2 \mathrm{n}-1.6 \mathrm{n}
$$

$$
=0.4 \mathrm{n}
$$

moles of $\mathrm{O}_{2}=\mathrm{n}-x$

$$
=\mathrm{n}-0.8 \mathrm{n}
$$

$$
=0.2 \mathrm{n}
$$

moles of $\mathrm{H}_{2} \mathrm{O}=2 \times 0.8 \mathrm{n}$

$$
=1.6 \mathrm{n}
$$

Total no of moles at final $=0.4 \mathrm{n}+0.2 \mathrm{n}+1.6 \mathrm{n}$
Total no of moles before the react $=2 n+n+0=3 n$
Now,

$$
\begin{align*}
& \mathrm{PV}=\mathrm{nRT} \\
& (0.8) \times \mathrm{V}=3 \mathrm{n} \times \mathrm{R} \times 293 \tag{i}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{P} \times \mathrm{V}=2.2 \mathrm{n} \times \mathrm{R} \times 393 \tag{ii}
\end{equation*}
$$

eq (i) divided eq (ii)

$$
\begin{aligned}
& \frac{0.8 \times \mathrm{V}}{\mathrm{P} \times \mathrm{V}}=\frac{3 \mathrm{n} \times \mathrm{R} \times 293}{2.2 \mathrm{n} \times \mathrm{R} \times 393} \\
& \Rightarrow \quad \frac{0.8}{\mathrm{P}}=\frac{3 \times 293}{2.2 \times 393}=\mathrm{P}=\frac{2.2 \times 393 \times 0.8}{3 \times 293} \\
& \mathrm{P}=0.787
\end{aligned}
$$

The Best Online Coaching for JEE -NEET $\cdot$ CBSE Prep www.misostudy.com

な8929803804 | support@misostudy.com

## MATHEMATICS

## JEE Main 2021-22 CRASH COURSE

JEE Main crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Main. It is a focused course for the JEE aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Main Exam.
© Important problem-solving and revision of all important topics with the last 7 years JEE Main analysis. AProviding problem-solving tips and tricks for the exam. © $100 \%$ JEE Main pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight.

- Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. —Boosts confidence in students so that they can score well.

1. The distance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12} \quad \&$ the plane $x-y+z=16$ is
(a) 8
(b) $3 \sqrt{21}$
(c) 13
(d) $2 \sqrt{14}$
2. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=$ $y=z$ is
(a) $3 \sqrt{10}$
(b) $10 \sqrt{3}$
(c) $\frac{10}{\sqrt{3}}$
(d) $\frac{20}{3}$
3. If the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane $l x+m y-z=9$ them $l^{2}+m^{2}$ is equal to
(a) 26
(b) 18
(c) 5
(d) 2
4. If the image of the point $(1,-2,3)$ in the plane $2 x+3 y-4 z+22=0$ measured parallel to the line $\frac{x}{1}=\frac{y}{4}=\frac{z}{5}$ is Q them PQ is equal to
(a) $\sqrt{42}$
(b) $6 \sqrt{5}$
(c) $3 \sqrt{5}$
(d) $2 \sqrt{42}$
5. 

(i) The length of the projection of the line segment joining the points $(5,-1,4)$ and $(4,-1,3)$ on the plane $x+y+z=7$ is
(a) $\frac{2}{\sqrt{3}}$
(c) $\frac{1}{3}$
(b) $\frac{2}{3}$
(d) $\frac{\sqrt{2}}{\sqrt{3}}$
(ii) Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is
(a) $x+2 y-2 z=0$
(b) $3 x+2 y-2 z=0$
(c) $x-2 y+z=0$
(d) $5 x=2 y-4 z=0$
6.
(i) Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{i}+\hat{j}+\hat{k} \& \vec{c}$ is a vector such that $\vec{a} \times \vec{c}+\vec{b}=\overrightarrow{0}$ \& $\vec{a} \cdot \vec{c}=4$ them $|\vec{c}|^{2}=$ ?
(ii) Let $\vec{a}=\hat{i}+\hat{j}+\sqrt{2} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+\sqrt{2} \hat{k} \& \vec{c}=5 \hat{i}+\hat{j}+\sqrt{2} \hat{k}$ be three vectors such that the projection of $\vec{b}$ on $\vec{a}$ is $\vec{a}$. If $\vec{a}+\vec{b}$ is perpendicular to $\vec{c}$ then $|\vec{b}|=$ ?
7.
(i) Let A be a point on the line
$\vec{r}=(1-3 \mu) \hat{i}+(\mu-1) \hat{j}+(2+5 \mu) \hat{k} \& \mathrm{~B}(3,2,6)$ be a point in space then value of $\mu$ for which $\overrightarrow{A B}$ is parallel to the plane $\underset{\rightarrow}{x}-\underset{\rightarrow}{4 y}+3 z=1$ is
(ii) Let $\vec{a}=(\lambda-2) \vec{a}+\vec{b}$ and $\vec{\beta}=(4 \lambda-2) \vec{a}+3 \vec{b}$ be two given vectors where vectors $\vec{a}$ \& $\vec{b}$ are non - collinear. The value of $\lambda$ for which $\vec{a} \& \vec{b}$ are collinear is
(i) Let $\vec{a}=\hat{i}+2 \hat{j}+4 \hat{k} \& \vec{b}=\hat{i}+\lambda \hat{j}+4 \hat{k}$ \& $\vec{c}=2 \hat{i}+4 \hat{j}+\left(\lambda^{2}-1\right) \hat{k}$ be coplanar vectors then, the non zero vector $\vec{a} \times \vec{c}$ is
(ii) Let $\sqrt{3} \hat{i}+\hat{j}, \hat{i}+\sqrt{3} \hat{j} \& \beta \hat{i}+(1-\beta) \hat{j}$ respectively be the position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with respect to origin O . If the distance of C from the bisector of the acute angle between $\mathrm{OA} \& \mathrm{OB}$ is $\frac{3}{\sqrt{2}}$ then sum of all possible values of $\beta$ is
(iii) Let $\vec{a}, \vec{b}, \vec{c}$ be 3 unit vectors out of which vectors $\vec{b} \& \vec{c}$ are non parallel. If $\alpha$ and $\beta$ are the angles which vector $\vec{a}$ makes with vectors $|\alpha-\beta|$ is equal to :
9. Let $[x]$ denote the greatest integer less than or equal to $x$. Then,
$\lim _{x \rightarrow 0} \frac{\tan \left(\pi \sin ^{2} x\right)+(|x|-\sin (x[x]))^{2}}{x^{2}}$ :
(a) Does not exist
(b) equals $\pi$
(c) equals $1+\pi$
(d) equals 0
10.
(i) $\lim _{y \rightarrow 0} \frac{\sqrt{1+\sqrt{1+y^{4}}}-\sqrt{2}}{y^{4}}$ is :
(a) exists and equals $\frac{1}{4 \sqrt{2}}$
(b) exists and equals $\frac{1}{2 \sqrt{2}(\sqrt{2}+1)}$
(c) exists and equals $\frac{1}{2 \sqrt{2}}$
(d) Does not exist

## Answer \& Solutions

1. (c)

Eqn. of line $: \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}=\lambda$
$\therefore$ Any point on this line is

$$
(x, y, z)=(3 \lambda+2,4 \lambda-1,12 \lambda+2)
$$

Let $(\mathrm{x}, \mathrm{y}, \mathrm{z})$ lies on the plane $\mathrm{x}-\mathrm{y}+\mathrm{z}=16$
$\Rightarrow(3 \lambda+2)-(4 \lambda-1)+(12 \lambda+2)=16$
$\Rightarrow \lambda=1$
$\therefore$ Point of intersection of line $\&$ plane is $(5,3,14)$
A
B
$(10,2)$
$\mathrm{AB}=\sqrt{16+9+144}=13$ units
2. (b)


Eq. of $\mathrm{L}_{1}: \quad \frac{x-1}{1}=\frac{y+5}{1}=\frac{z-9}{1}=\lambda$
$\therefore(x, y, z) \equiv(\lambda+1, \lambda-5, \lambda+9)$.
Let $(\lambda+1, \lambda-5, \lambda+9)$ lie on the plane

$$
\begin{gathered}
\therefore(\lambda+1)-(\lambda-5)+(\lambda+9)=5 \\
\lambda=-10
\end{gathered}
$$

$\therefore \mathrm{D} \equiv(-9,-15,-1)$
And, $\quad \mathrm{AD}=\sqrt{100+100+100}$

$$
=10 \sqrt{3} \text { unit }
$$

3. (d)

D.R of plane are $1, \mathrm{~m}-1$

Now, $\mathrm{A}(3,-2,4)$ lies on the plane

$$
\begin{align*}
& \therefore l(3)+\mathrm{m}(-2)-(-4)=9 \\
& 31-2 \mathrm{~cm}=5  \tag{1}\\
& \& \vec{n} \perp \vec{b} \Rightarrow \vec{n} \cdot \vec{b}=O \\
& \text { i.e. } 2 l-\mathrm{m}=3
\end{align*}
$$

Solving (1) \& (2) we get

$$
\therefore l^{2}+\mathrm{m}^{2}=2
$$

4. (d)


Eq . of line passing through P harting
D. $\mathrm{R} 1,4,5$ is $: \frac{x-1}{1}=\frac{y+2}{4}=\frac{z-3}{5}$
$\therefore(x, y, z) \equiv(\lambda+1,4 \lambda-2,5 \lambda+3)$ lies on the plane
$\therefore 2(\lambda+1)+3(4 \lambda-2)-4(5 \lambda+3)+22=0$

$$
\Rightarrow \lambda=1
$$

$\therefore \mathrm{D} \equiv(2,2,8)$
$\therefore \mathrm{PQ}=\mathrm{PD}+\mathrm{DQ}=2 \mathrm{PD}$

$$
2 \sqrt{1^{2}+4^{2}+5^{2}}=2 \sqrt{42}
$$

5. (i) $\rightarrow$ (d) (ii) $\rightarrow$ (c)


$$
\begin{aligned}
& \xrightarrow{\mathrm{A} \equiv}(5,-5,4) \mathrm{B} \equiv(4,-1,3) \\
& \overrightarrow{\mathrm{AB}}=(4 \hat{i}-\hat{j}-\hat{j}+3 \hat{k})-(5 \hat{i}-\hat{j}+4 \hat{k})=-\hat{i}+0 \hat{j}-\hat{k} \\
& \\
& \\
& (\hat{i}+\hat{j}| | \overrightarrow{j B} \mid \cos \theta \\
& \quad \Rightarrow \cos \theta=-(-\hat{j}+0 \hat{j}-\hat{k})=\sqrt{3} \sqrt{2} \cos \theta \\
& \quad \Rightarrow \sin \theta=1 / \sqrt{3}
\end{aligned}
$$

Projection $=\mathrm{AF}$
$\cos (90 \circ-\theta)=\frac{A F}{A B}$

$$
\begin{aligned}
& \Rightarrow \mathrm{AF}=\mathrm{AB} \cos \left(90^{\circ}-\theta\right) \\
& =|\overrightarrow{A B}| \sin \theta \\
& =\sqrt{2} \times \frac{1}{\sqrt{3}}=\frac{\sqrt{2}}{\sqrt{3}}
\end{aligned}
$$

(ii)


Now, $\mathrm{P}_{1} \xrightarrow{\perp} \mathrm{P}_{2}$
$\Rightarrow \xrightarrow{n_{1}} \perp \overrightarrow{n_{2}}$
\& $\overrightarrow{n_{1}} \perp(2 \hat{i}+3 \hat{j}+4 \hat{k}) \& \overrightarrow{n_{2}} \perp(4 \hat{i}+2 \hat{j}+3 \hat{k})$
$\& \overrightarrow{n_{2}} \perp(3 \hat{i}+4 \hat{j}+2 \hat{k}) \overrightarrow{n_{2}} \perp(4 \hat{i}+2 \hat{j}+3 \hat{k})$
$\Rightarrow \overrightarrow{n_{2}}=(3 \hat{i}+4 \hat{j}+2 \hat{k}) \times(4 \hat{i}+2 \hat{j}+3 \hat{k})$
$\Rightarrow \overrightarrow{n_{2}}=8 \hat{i}-\hat{j}-10 \hat{k}$
$\& \overrightarrow{n_{1}}=\overrightarrow{n_{2}}=0 \Rightarrow 8 a-b 10 c=0$
$\& \overrightarrow{n_{1}} \cdot(2 \hat{i}+3 \hat{j}+4 \hat{k})=0 \Rightarrow 2 \mathrm{a}+3 \mathrm{~b}+4 \mathrm{c}=0$
By (1) \& (2),

$$
\frac{a}{1}=\frac{b}{2}=\frac{c}{1}
$$

$\therefore \mathrm{Eq}^{\mathrm{n}}$ of plane is $x-2 \mathrm{y}+\mathrm{z}=0$
6. (i) $\rightarrow 19 / 2$ (ii) $\rightarrow 6$
(i) $\frac{\vec{a}}{\vec{\ell}}=\begin{gathered}\hat{i}-\hat{j} \\ \hat{i}+\hat{j}+\hat{k}\end{gathered}$
$(\vec{a} \times \vec{c})+\vec{b}=\vec{O}$
$\Rightarrow \vec{a} \times \vec{c}=\overrightarrow{-b}$
$(\vec{a} \times \vec{c}) \times \vec{a}=(-\vec{b}) \times \vec{a}$
$(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{c} \cdot \vec{a}) \vec{a}=-(\vec{b} \times \vec{a})$

$$
\begin{aligned}
& |\vec{a}|^{2} \vec{c}-4 \vec{a}=\vec{a} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & -1 & 0 \\
1 & 1 & 1
\end{array}\right| \\
& =-\hat{i}-\hat{j}+2 \hat{k} \\
& 2 \vec{c}-4 \vec{a}=(-\hat{i}-\hat{j}+2 \hat{k}) \\
& 2 \vec{c}=(-\hat{i}-\hat{j}+2 \hat{k})+(4 \hat{i}-4 \hat{j}+0 \hat{k}) \\
& 2 \vec{c}=3 \hat{i}-5 \hat{j}+2 \hat{k}
\end{aligned}
$$

$$
\begin{gathered}
\vec{c}=\frac{3}{2} \hat{i}-\frac{5}{2} \hat{j}+\frac{2}{2} \hat{k} \\
|\vec{c}|^{2}=(3 / 2)^{2}+\left(\frac{-5}{2}\right)^{2}+(1)^{2} \\
=19 / 2
\end{gathered}
$$

(ii)

$\cos \theta=\frac{A f}{|\vec{\ell}|} \Rightarrow A f=|\vec{\ell}| \cos \theta=\frac{|\vec{a}| \vec{a} \cdot \vec{a}}{|\vec{a}||\vec{b}|}=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}$
$\therefore \frac{\vec{a} \cdot \vec{b}}{|\vec{a}|}=|\vec{a}|$
So, $\vec{a} \cdot \vec{b}=|\vec{a}|^{2}$
$\therefore \mathrm{b}_{1}+\mathrm{b}_{2}+2=4$

$$
\begin{array}{ll} 
& \mathrm{b}_{1}+\mathrm{b}_{2}=2 \\
\vec{a}+\vec{b}= & \left.\left(1+b_{1}\right) \hat{i}+\left(1+b_{2}\right) \hat{j}+(2 \sqrt{2}) \hat{k}(\vec{a}+\vec{a}) \cdot \vec{a} \mid=2\right) \\
& \Rightarrow 12+4 \mathrm{~b}_{1}=0 \\
& \Rightarrow \mathrm{~b}_{1}=-3 \\
& \vec{a}=-3 \hat{i}+5 \hat{j}+\sqrt{2} \hat{k} \\
\therefore \quad & |\vec{a}|=\sqrt{9+25+2}=\sqrt{36}=6
\end{array}
$$

7. (i) $\rightarrow \mu=1 / 4$. (ii) $\rightarrow \lambda=-4$.
(i)


Let $\vec{r}=(1-4 \mu) \hat{i}+(\mu-2) \hat{j}+(2+\mu) \hat{k}$

$$
\underbrace{(\hat{i}-\hat{j}+2 \hat{k})}_{a}+\mu \underbrace{(-3 \hat{i}+\hat{j} 5 \hat{k})}_{b}
$$


$\mathrm{L}: \frac{x-1}{-3}=\frac{y+1}{1}=\frac{z-2}{5}=\mu$
$(\mathrm{x}, \mathrm{y}, \mathrm{z})=(-3 \mu+1, \mu-1,5 \mu+2)$
$\therefore \overrightarrow{\mathrm{AB}}=(3 \mu+2) \hat{i}+(3-\mu) \hat{j}+(4-5 \mu) \hat{k}$

$$
\mathrm{By}(1)
$$

$$
\mu=1 / 4
$$

(ii) $\exists$ constant $x$;

$$
\begin{gathered}
\begin{array}{c}
\alpha=x \beta \\
(\lambda-2) \vec{a}+\vec{b}
\end{array}=x((4 \lambda-2) x) \vec{a}+3 x \vec{b} \\
\quad=((4 \lambda-2) x) \vec{a}+3 x \vec{b} \\
\Rightarrow \underbrace{((\lambda-2)-(4 \lambda-2) x) \vec{a}}_{k_{1}}+\underbrace{(1-3 x)}_{k_{2}} \vec{b}=0 \\
\Rightarrow 1-3 x=0 \Rightarrow 1=x \text { or } x=1 / 3 \\
\& \quad \lambda-2-(4 \lambda-2) x=0 \\
\Rightarrow \lambda=-4 .
\end{gathered}
$$

8. (i) $\rightarrow 10 \hat{i}+5 \hat{j}_{\rightarrow}^{\hat{j}}$ (ii) $\rightarrow 2 \beta=-2$ i.e. $\beta=1$. (iii) $\rightarrow \therefore|\alpha-\theta|=|\pi| 2-\pi|3|=30^{\circ}$
(i) $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$

$$
\begin{align*}
& \left|\begin{array}{ccc}
1 & 2 & 4 \\
1 & \lambda & 4 \\
2 & 4 & \lambda^{2-1}
\end{array}\right|=0 \\
& \Rightarrow \lambda^{3}-2 \lambda^{2-} 9 \lambda+18=0  \tag{i}\\
& \lambda-2 \text { is a factor of } \\
& \text { (i) } \\
& \therefore \lambda^{3}-2 \lambda^{2}-9 \lambda+18(\lambda-2)\left(\lambda^{2}-9\right)=0 \\
& \text { i.e. }(\lambda-2)(\lambda-3)(\lambda+3)=0 \\
& \text { Values of } \lambda \text { are } 2,3,-3 \\
& \xrightarrow[\rightarrow]{\vec{c}}=2 \vec{i}+4 \hat{j}+3 \hat{k} \text { or } \\
& \vec{c}=2 \vec{i}+4 \hat{j}+8 \hat{k} \\
& \underset{\rightarrow}{=} 2 \vec{a} \\
& \therefore \vec{a} \& \underset{\rightarrow}{\vec{c}} \text { are colinear vectors } \\
& \Rightarrow \vec{a} \times \vec{c}=\overrightarrow{0} \\
& \therefore \lambda \neq 3,-3 \text {. } \\
& \lambda=2 \\
& \& \vec{c}=2 \hat{i}+4 \hat{j}+3 \hat{k} \\
& \therefore \vec{a} \times \vec{c}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 4 \\
2 & 4 & 3
\end{array}\right|=-10 \hat{i}+5 \hat{j}
\end{align*}
$$

The Best Online Coaching for JEE - NEET - CBSE Prep
(ii)

$\frac{3}{\sqrt{2}}=\mathrm{d}=\frac{|1-\beta-\beta|}{\sqrt{1^{2}+1^{2}}}$
$\Rightarrow|1-2 \beta|=3$
$\Rightarrow 1-2 \beta= \pm 3$
$\therefore 1 \pm 3=2 \beta$
$\therefore 2 \beta-4 \Rightarrow \beta=2$
or

$$
2 \beta=-2 \text { i.e. } \beta=1
$$

(iii)

$$
\begin{aligned}
& \quad \vec{a} \times(\vec{b} \times \vec{c})=1 / 2 \vec{b} \\
& (\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=1 / 2 \vec{b} \\
& \left((\vec{a} \cdot \vec{c})-\frac{1}{2}\right) \vec{b}-(\vec{a} \cdot \vec{c}) \vec{c}=1 / 2 \vec{b} \\
& \text { As } \vec{a} \& \vec{a} \text { are non collinear } \\
& \Rightarrow \vec{a} \cdot \vec{c}-1 / 2=0 \& \vec{a} \cdot \vec{b}=0 \\
& \overrightarrow{\vec{a}} \cdot \vec{c}=1 / 2 \& \quad \& \quad \vec{a} \perp \vec{b}=\alpha=90^{\circ}=\pi / 2 \\
& |\vec{a}||\vec{c}| \cos \theta=1 / 2 \quad \& \quad \alpha=\pi / 2 \\
& \Rightarrow \theta=60 \circ=\pi / 3 \quad \& \quad \alpha=\pi / 2 \\
& \therefore \\
& \therefore|\alpha-\theta|=|\pi| 2-\pi|3|=30^{\circ}
\end{aligned}
$$

9. (a)

$$
\text { RHL : } \lim _{h \rightarrow 0} \frac{\tan \left(\pi \sin ^{2}(h)\right)+(h+0)^{2}}{h^{2}}
$$

i.e $\lim _{h \rightarrow 0}\left(\frac{\tan \left(\pi / \sin ^{2}(h)\right) \times \sin ^{2} h}{\pi \sin ^{2} h \times h^{2}}\right)+\lim _{h \rightarrow 0}(1)$
i.e. $\left(\lim _{h \rightarrow 0} \frac{\tan \left(\pi \sin ^{2} h\right)}{\pi \sin ^{2} h}\right) \pi \lim \left(\frac{\sin h}{h}\right)^{2}+1$
ie

$$
\pi+1
$$

LHL : $\lim _{h \rightarrow 0} \frac{\tan \left(\sin ^{2}(-h)\right)+(|-h|-\sin (-h[-h]))^{2}}{(-h)^{2}}$
(As $\mathrm{h} \rightarrow 0 \& \mathrm{~h}>0 \&-\mathrm{h}<0 \therefore[-\mathrm{h}]=-1$ )
$=\lim _{h \rightarrow 0}\left(\frac{\tan \left(\pi \sin ^{2} h\right)}{h}+\left(\frac{h-\sin h}{h}\right)^{2}\right)$
$(1 \times \pi)+(1+1-2)=\pi$
$\therefore$ LHL $\neq$ RHL
10. (a)
(i) : $x \rightarrow 0$

$$
\begin{gathered}
(1+x)^{\mathrm{n}}=1 \mathrm{n} x \\
\sqrt{1+y^{4}}=\left(1+y^{4}\right)^{1 / 2} \\
=1+\frac{1}{2} y^{4} \\
\therefore \lim _{y \rightarrow 0} \frac{\sqrt{1+1+\frac{y^{4}}{2}}-\sqrt{2}}{y^{4}} \\
=\lim _{y \rightarrow 0} \frac{\sqrt{2+\frac{y^{4}}{2}}-\sqrt{2}}{y^{4}} \\
=\lim _{y \rightarrow 0} \frac{\sqrt{2}\left(\left(1+\frac{y^{4}}{4}\right)^{1 / 2}-1\right)}{y^{4}} \\
=\lim _{y \rightarrow 0} \frac{\sqrt{2}\left(1+\frac{1}{2} y \frac{4}{4}-1\right)}{y^{4}}=\frac{1}{4 \sqrt{2}}
\end{gathered}
$$

## CRASH COURSE

## JEE ADVANCED 2021-22

## PHYSICS

* This is for the Sample Studly Material. we provides all the study
material to purchased user. Please check the course details on www.misostudy.com


## JEE Advanced 2021-22 CRASH COURSE

JEE Advanced crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Advanced. It is a focused course for the JEE Advanced aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Advanced Exam.
AImportant problem-solving and revision of all important topics with the last 7 years JEE Advanced analysis. ©Providing problem-solving tips and tricks for the exam. © 100\% JEE Advanced pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight.

- Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. © Boosts confidence in students so that they can score well.


## SET-1

## (Q1 \& 2) Only One Option Correct

1. The sum, difference and cross product of two vectors $\vec{A}$ and $\vec{B}$ are mutually perpendicular if
(a) $\vec{A}$ and $\vec{B}$ are perpendicular to each other and $|\vec{A}|=|\vec{B}|$
(b) $\vec{A}$ and $\vec{B}$ are perpendicular to each other
(c) $\vec{A}$ and $\vec{B}$ are perpendicular but their magnitudes are arbitrary
(d) $|\vec{A}|=|\vec{B}|$ and their directions are arbitrary
2. The $|u|,|v|$ graph for a concave mirror is as shown in figure. Here $|u|>|f|$. A line passing through origin of slope 1 cuts the graph at point $P$. Then co-ordinates of point $P$ are

(a) $\quad(|2 f|,|2 f|)$
(c) $\quad(|f|,|2 f|)$
(b) $\quad(|2 f|,|f|)$
(d) $\quad(|f|,|f|)$

## (Q3) More Than One Option Correct

3. Units off $C R^{2}$ is/are ( $C=$ capacitance and $R=$ resistance).
(a) henry
(b) $\frac{\text { volt }- \text { second }}{\text { ampere }}$
(c) $\frac{\text { volt }}{\text { ampere }}$
(d) $\frac{\text { joule }}{\text { ampere }{ }^{2}}$

## (Q4) Matrix Match

4. For component of a vector $\vec{A}=(3 \hat{i}+4 \hat{j}-5 \hat{k})$, match the following table

| Table-1 | Table-2 |
| :--- | :--- |
| (a) Along $y$-axis | (p) 5 unit |
| (b) Along another vector $(2 \hat{i}+\hat{j}+2 \hat{k})$ | (q) 4 unit |
| (c) Along $(6 \hat{i}+8 \hat{j}+10 \hat{k})$ | (r) Zero |
| (d) Along another vector $(-3 \hat{i}+4 \hat{j}+5 \hat{k})$ | (s) None |

## (Q5 \& 6) Only One Option Correct

5. A particle moves in space along the path $z=a x^{3}+b y^{2}$ in such a way that $\frac{d x}{d t}=c=\frac{d y}{d t}$ where $a, b$ and $c$ are constants. The acceleration of the particle is
(a) $\left(6 a c^{2} x+2 b c^{2}\right) \hat{k}$
(c) $\left(4 b c^{2} x+3 a c^{2}\right) \hat{k}$
(b) $\left(2 a x^{2}+6 b y^{2}\right) \hat{k}$
(d) $\left(b c^{2} x+2 b y\right) \hat{k}$
6. A particle is dropped from point $A$ at a certain height from ground. It falls freely and passes through three points $B, C$ and $D$ with $B C=C D$. The time taken by the particle to move form $B$ to $C$ is 2 s and from $C$ to $D$ is 1 s . The time taken to move from $A$ to $B$ is
(a) 0.5 s
(c) 0.75 s
(b) 1.5 s
(d) 0.25 s

## SET-2

## (Q1 \& 2) Only One Option Correct

1. The distance between two moving particles at any time is $a$. If $v$ be their relative velocity and $v_{1}$ and $v_{2}$ be the components of $v$ along and perpendicular to $a$. The time when they are closest to each other are
(a) $\frac{a v_{1}}{v^{2}}$
(c) $\frac{a v}{v_{1}^{2}}$
(b) $\frac{a v_{2}}{v^{2}}$
(d) $\frac{a v}{v_{2}^{2}}$
2. In the one-dimensional motion of a particle, the relation between position $x$ and time $t$ is given by $x^{2}+2 x=t$ (here $x>0$ ). Choose the correct statement
(a) the retardation of the particle $\frac{1}{4(x+1)^{3}}$
(b) the uniform velocity of the particle is $\frac{1}{(x+1)^{3}}$
(c) Both are correct
(d) Both are wrong

## (Q3) More Than One Option Correct

3. Let $\vec{v}$ and $\vec{a}$ be the instantaneous velocity and acceleration of a particle moving in a plane. The, rate of change of speed $\frac{d v}{d t}$ of the particle is equal to
(a) $\underset{\rightarrow \vec{a} \mid}{\vec{a} \mid}$
(b) $\frac{v \cdot a}{v}$
(c) the component of $\vec{a}$ parallel to $\vec{v}$
(d) the component of $\vec{a}$ perpendicular to $\vec{v}$

## (Q4 \& 5) Comprehension Type

## Passage

At time $t=0$, particle A is at $(1 m, 2 m)$ and $B$ is at $(5 m, 5 m)$. Velocity of $B$ is $(2 \hat{i}+4 \hat{j}) \mathrm{m} / \mathrm{s}$ velocity of particle A is $\sqrt{2} v$ at $45^{\circ}$ with $x$-axis. A collides with $B$.
4. Value of $v$ is. $\qquad$ $\mathrm{m} / \mathrm{s}$.
(a) 5
(c) 25
(b) 15
(d) 10
5. Time when $A$ will collide with $B$ is $\qquad$ second.
(a) 0.5 s
(c) 4 s
(b) 1.5 s
(d) 3 s

The Best Online Coaching for JEE -NEET $\cdot$ CBSE Prep www.misostudy.com
© 8929803804 | support@misostudy.com

## Answer \& Solutions

## SET-1

## (Q1 \& 2) Only One Option Correct

1. (d)

Let $\vec{A}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$
$\vec{B}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$
$(\vec{A}+\vec{B}) \perp(\vec{A}-\vec{B})$ given
$(\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})=0$
$|\vec{A}|=|\vec{B}|$
$\vec{A} \times \vec{B} \perp$ to plane formed by $\vec{A}$ and $\vec{B}$ or $\vec{A}+\vec{B}$ and $\vec{A}-\vec{B}$
2. (a)

When object at centre of curvature, image coincides with object.

## (Q3) More Than One Option Correct

3. $(a, b, d)$

Time constant in $C-R$ and $L-R$ circuits are $C R$ and $\frac{L}{R}$
$\mathrm{CR}=\frac{\mathrm{L}}{\mathrm{R}}$ or $\mathrm{CR}^{2} \equiv \mathrm{~L}$ units of $\mathrm{CR}^{2}$ and L are same
$|E|=L\left(\frac{d I}{d t}\right)$ and $U=\frac{1}{2} L i^{2}$
$\Rightarrow$ Units of L or $\mathrm{CR}^{2}, \frac{V-\text { second }}{A}$ and $\frac{J}{A^{2}}$

## (Q4) Matrix Match

4. 

(a) $\rightarrow$ (q)
(b) $\rightarrow$ (r)
$(\mathrm{c}) \rightarrow(\mathrm{s})$
(d) $\rightarrow$ (s)

## (Q5 \& 6) Only One Option Correct

5. (a)
$\frac{d \alpha}{d t}=\frac{d y}{d t}=c$
$\frac{d^{2} \alpha}{d t^{2}}=\frac{d^{2} y}{d t^{2}}=0$
$\mathrm{Z}=a x^{3}+b y^{2}$
$=3 a c x^{2}+2 b c y$
$\frac{d^{2} Z}{d t^{2}}=6 a c \times\left(\frac{d x}{d t}\right)+2 b c\left(\frac{d y}{d t}\right)$
$=6 a c^{2}+2 b c^{2}$
$\vec{a}=\frac{d^{2} x}{d t^{2}} \hat{i}+\frac{d^{2} y}{d t^{2}} \hat{j}+\frac{d^{2} z}{d t^{2}} \hat{k}$
$\left(6 a c^{2} x+2 b c^{2}\right) \hat{k}$
6. (a)
$\mathrm{t}_{\mathrm{AB}}=\mathrm{t}$

$y=\frac{1}{2} g t^{2}$
$\mathrm{y}+\mathrm{h}=\frac{1}{2} \mathrm{~g}(\mathrm{t}+2)^{2}$
$\mathrm{y}+2 \mathrm{~h}=\frac{1}{2} \mathrm{~g}(\mathrm{t}+3)^{2} \mathrm{~h}$
$\Rightarrow \mathrm{t}=.5 \mathrm{~s}$

## SET-2

## (Q1 \& 2) Only One Option Correct

1. (a)
$V^{2}=V_{1}^{2}+V_{2}^{2} \Rightarrow \tan \theta=\frac{V_{1}}{V_{2}}$
$\cos \theta=\frac{V_{2}}{\sqrt{v_{1}^{2}+v_{2}^{2}}}$

The Best Online Coaching for JEE $\cdot$ NEET $\cdot$ CBSE Prep www.misostudy.com

Z 8929803804 | support@misostudy.com
$=\frac{V_{2}}{v}$

$\sin \theta=\frac{V_{1}}{\sqrt{V_{1}^{2}+V_{2}^{2}}}=\frac{V_{1}}{V}$
Time $\frac{A C}{V}=\frac{A B \sin \theta}{V}=\frac{a v_{1}}{v^{2}}$
2. (a)
$\frac{d t}{d x}=2(x+1) \Rightarrow v=\frac{d x}{d t}$
$\Rightarrow v=\frac{1}{2(x+1)}$ and $a=\frac{d v}{d t}$
$\Rightarrow-\frac{1}{2(x+1)^{2}} \cdot \frac{d x}{d t}=-\frac{1}{4(x+1)^{3}}$

## (Q3) More Than One Option Correct

3. $(b, c)$

Speed $v^{2}=v_{x}^{2}+v_{y}^{2}$
$\Rightarrow 2 V \frac{d v}{d t}=2 v_{x} \frac{d v_{x}}{d t}+2 v_{y} \frac{d v_{y}}{d t}$
$\Rightarrow \frac{d v}{d t}=\frac{v_{x} a x+v_{y} a y}{v}=\frac{\overrightarrow{v \cdot \vec{a}}}{v}$
Compound of $\vec{a} \|$ to $v$

## (Q4 \& 5) Comprehension Type

4. (d)
$\vec{V}_{A}=V \hat{i}+V \hat{j}$
$\vec{V}_{B}=2 \hat{i}+4 \hat{j}$
$\vec{V}_{A B}=(V-2) \hat{i}+(V-4) \hat{j}$
$\overrightarrow{A B}=(4 \hat{i}+3 \hat{j})$
$\vec{V}_{A B} \uparrow \uparrow \overrightarrow{A B} i+\frac{V-2}{4}=\frac{V-4}{3}$
$\Rightarrow \mathrm{V}=10$
5.(d)
$\left|\vec{V}_{A B}\right|=10$
$|A \vec{B}|=5 \Rightarrow t=\frac{|\overrightarrow{A B}|}{\left|\vec{V}_{A B}\right|}=.5 \mathrm{sec}$

## CHEMISTRY

## JEE Advanced 2021-22 CRASH COURSE

JEE Advanced crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Advanced. It is a focused course for the JEE Advanced aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Advanced Exam.
©Important problem-solving and revision of all important topics with the last 7 years JEE Advanced analysis. ©Providing problem-solving tips and tricks for the exam. © 100\% JEE Advanced pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight.

- Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. © Boosts confidence in students so that they can score well.


## [One Option Correct]

1. 1.020 g of metallic oxide contains 0.540 g of the metal. Calculate the equivalent mass of the metal and hence its atomic mass with the help of Dulong and Petit's law. Taking the symbol for the metal as M . find the molecular formula of the oxide. The specific heat of the metal is $0.216 \mathrm{cal} \mathrm{deg}^{-1} \mathrm{~g}^{-1}$.
(a) $\mathrm{M}_{2} \mathrm{O}_{3}$
(b) $\mathrm{M}_{4} \mathrm{O}_{3}$
(c) $\mathrm{M}_{2} \mathrm{O}_{4}$
(d) $\mathrm{M}_{3} \mathrm{O}_{5}$
2. A partially dried clay mineral contains $8 \%$ water. The original sample contained $12 \%$ water and $45 \%$ silica. The $\%$ of silica in the partially dried sample is nearly.
(a) $50 \%$
(b) $49 \%$
(c) $55 \%$
(d) $47 \%$
3. A mixture in which the mole ratio of $\mathrm{H}_{2}$ and $\mathrm{O}_{2}$ is $2: 1$ is used to prepare water by the reaction,

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

The total pressure in the container is 0.8 atm at $20^{\circ} \mathrm{C}$ before the reaction. Determine the final pressure at $120^{\circ} \mathrm{C}$ after reaction assuming $80 \%$ yield of water.
(a) 0.8054 atm
(b) 0.7864 atm
(c) 0.9744 atm
(d) 0.6964 atm
4. A mixture of HCOOH and $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is heated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The gas produced is collected and on treating with KOH solution, the volume of the gas decreases by $1 / 6$ th.
Calculate the molar ratio of the two acids in the original mixture.
(a) $2: 3$
(b) $6: 5$
(c) $4: 1$
(d) $8: 6$

## [Integer Type Questions]

5. A plant virus is found to consist of uniform cylindrical particles of $150 \AA$ in diameter and $5000 \AA$ long. The specific volume of the virus is $0.75 \mathrm{~cm}^{3} / \mathrm{g}$. If the virus is considered to be a single particle, find its molecular mass.
6. On dissolving 2.0 g of metal in sulphuric acid, 4.51 g of the metal sulphate was formed. The specific heat of the metal is $0.057 \mathrm{cal} \mathrm{g}^{-1}$. What is the valency of the metal and exact atomic mass ?

## [Matrix Matching]

7. Match the Column-X and Column-Y:

Column-X Column-Y
(a) $1.6 \mathrm{~g} \mathrm{CH}_{4} \quad$ (i) 0.1 mol
(b) $1.7 \mathrm{~g} \mathrm{NH}_{3}$ (ii) $6.023 \times 10^{23}$ electrons
(c) HCHO
(iii) $40 \%$ carbon
(d) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
(iv) Vapour density $=15$

## [One Option Correct]

8. The ratio of the frequency corresponding to the third line in Lyman series of hydrogen atomic spectrum to that of the first line in Balmer series of $\mathrm{Li}^{2+}$ spectrum is
(a) $\frac{4}{5}$
(c) $\frac{4}{3}$
(b) $\frac{5}{4}$
(d) $\frac{3}{4}$
9. A parent nucleus $X$ is decaying into daughter nucleus $Y$ which in turn decays to $Z$. Half lives of $X$ and $Y$ are 40000 years and 20 years respectively. In certain sample, it is found that the number of $Y$ nuclei hardly changes with time. If the number of $X$ nuclei in the sample is $4 \times 10^{20}$, the number $Y$ nuclei present in it is:
(a) $2 \times 10^{17}$
(c) $4 \times 10^{23}$
(b) $2 \times 10^{20}$
(d) $4 \times 10^{20}$
10. Three isotopes of an element have mass numbers $M,(M+1)$ and $(M+2)$. If the mean mass number is $(M+0.5)$, then which of the following ratios may be accepted for $M,(M+1)$, $(M$ +2 ) in that order?
(a) $1: 1: 1$
(b) $4: 1: 1$
(c) $3: 2: 1$
(d) $2: 1: 1$

The Best Online Coaching for JEE $\cdot$ NEET $\cdot$ CBSE Prep

## Answer \& Solutions

1. (a)

Mass of oxygen is the oxide $=(1.020-0.540)=0.480 \mathrm{gm}$
Equivalent mass of the metal $=\frac{0.540}{0.480} \times 8=9 \mathrm{gm}$
According to Dulong and Petit's law

$$
\begin{aligned}
& \text { Approx. atoms mass }=\frac{6 \cdot 4}{\text { SP. heat }}=\frac{64}{0.216}=29.63 \\
& \text { Valency of the metal }=\frac{\text { At. mass }}{\text { Eq. heat }}=\frac{29.63}{9} \approx 3
\end{aligned}
$$

Hence,
the formula of the oxide $=\mathrm{M}_{2} \mathrm{O}_{3}$
2. (d)

|  | Clay | Silica | Water |
| :--- | :---: | :---: | :---: |
| Initial stage | $43 \%$ | $45 \%$ | $12 \%$ |
| Final stage | $(92-x)$ | $x$ | $8 \%$ |

Ratio of silica and clay will remain constant, before and after drying.

$$
\frac{45}{43}=\frac{x}{92-x}
$$

$\therefore \quad x=47 \%$
(a)
3. (b)

$$
\begin{array}{rl}
\mathrm{pH}_{2} & =\frac{2}{3} \times 0.8=0.533 \mathrm{~atm} \\
\mathrm{pO}_{2} & =\frac{1}{3} \times 0.8=0.266 \mathrm{~atm} \\
2 \mathrm{H}_{2} & +\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{t}=0 \quad 0.533 & 0.266 \quad 0
\end{array}
$$

After the reaction $=\frac{0.533 \times 20}{100}=0.1066, \frac{0.266 \times 20}{100}=0.0533, \frac{0.533 \times 80}{100} 0.4264$.
Total pressure $=0.1066+0.0533+0.4264=0.5863$
Using Gay-Lussac's law

$$
\begin{aligned}
& \frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \\
& \frac{0.5863}{293}=\frac{\mathrm{P}_{2}}{393} \\
\Rightarrow \quad & \mathrm{P}_{2}=0.7864 \mathrm{~atm}
\end{aligned}
$$

4. (c)



Let " $a$ " moles of HCOOH and " $b$ " moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ be present in the original mixture moles of CO formed $=a+b$ moles of $\mathrm{CO}_{2}$ formed $=b$
Total moles of gases $=a+2 b$
Now

$$
\begin{aligned}
& \frac{a+2 b}{6}=b \\
\Rightarrow \quad & a=4 b \Rightarrow \frac{a}{b}=4 \\
\Rightarrow \quad & a: b=4: 1
\end{aligned}
$$

5. 114.72

Equivalent mass of $\mathrm{SO}_{4}{ }^{2-}$ radical $=\frac{\text { Ionic mass }}{\text { Valency }}$
$=\frac{96}{2}=48$
Mass of metal sulphate $=4.51 \mathrm{gm}$
Mass of metal $=2.0 \mathrm{gm}$
Mass of sulphate radical $=4.51-2=2.51 \mathrm{gm}$
2.51 gm of sulphate combine with 2 gm of metal.

So, 48 gm of sulphate will combine with $=\frac{2}{2.51} \times 48=38.24 \mathrm{gm}$ metal
$\therefore$ Equivalent mass of metal $=38.24 \mathrm{gm}$
According to Dulong and Petit's law
Approximate atomic mass $=\frac{6.4}{\text { Speci fic heat }}=\frac{6.4}{0.057}=112.5$
Valency $=\frac{\text { Approximate atomic mass }}{\text { Equivalent mass }}=\frac{112.5}{38.24} \approx 3$
Exact atomic mass $=38.24 \times 3=\mathbf{1 1 4 . 7 2}$
6. (a) $\rightarrow$ (i), (ii),
(b) $\rightarrow$ (i), (ii),
(c) $\rightarrow$ (iii), (iv),
(d) $\rightarrow$ (iii)
(a) $1.6 \mathrm{~g} \mathrm{CH}_{4}=\frac{1.6}{16}=0.1 \mathrm{~mole}$

$$
\begin{aligned}
& =0.1 \times 6.022 \times 10^{23} \times 10 \\
& =6.022 \times 10^{23} \text { electron }
\end{aligned}
$$

(b) $1.7 \mathrm{~g} \mathrm{NH}_{3}=\frac{1.7}{17}=0.1 \mathrm{~mole}$

$$
\begin{aligned}
& =0.1 \times 6.022 \times 10^{23} \times 10 \\
& =6.022 \times 10^{23} \text { electron }
\end{aligned}
$$

(c) $\%$ of "c" $=\frac{12}{30} \times 100=40 \%$
$\mathrm{MM}=2 \times \mathrm{VD}$
$\mathrm{VD}=\frac{\mathrm{MM}}{2}=\frac{30}{2}=15$
(d) $\%$ of "c" $=\frac{6 \times 12}{180} \times 100=\frac{72}{180} \times 100=40 \%$
7. (d)

For third line in Lyman series.

$$
\begin{aligned}
\mathrm{n}_{1} & =1 ; \mathrm{n}_{2}=4 \\
\mathrm{~V}_{\mathrm{H}} & =\frac{\mathrm{C}}{\lambda}=\mathrm{C} \cdot \mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right] \\
& =\mathrm{C} \cdot\left(\mathrm{R}_{\mathrm{H}}\right)(1)^{2}\left[\frac{1}{1^{2}}-\frac{1}{4^{2}}\right] \\
\mathrm{V}_{\mathrm{H}} & =\frac{15}{16} \mathrm{R}_{\mathrm{H}} \mathrm{C}
\end{aligned}
$$

For first line in Balmer series for $\mathrm{Li}^{2+}$

$$
\begin{aligned}
& \mathrm{n}_{1}=2 ; \mathrm{n}_{2}=3 \\
& \mathrm{~V}_{\mathrm{Li}^{2+}}=\left(\mathrm{R}_{\mathrm{H}}\right)\left(\mathrm{Z}^{2}\right)\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right] \\
&=\left(\mathrm{R}_{\mathrm{H}}\right)\left(3^{2}\right)\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right] \\
&=\mathrm{C} \mathrm{R}_{\mathrm{H}} \times 9 \times \frac{5}{36}=\frac{5}{4} \mathrm{CR}_{\mathrm{H}} \\
& \therefore \quad \quad \quad \frac{\mathrm{~V}_{\mathrm{H}}}{\mathrm{~V}_{\mathrm{Li}^{2+}}}=\frac{15}{6} \times \frac{4}{5}=\frac{3}{4}
\end{aligned}
$$

8. (a)

$$
\mathrm{X} \xrightarrow{\lambda_{x}} \mathrm{Y} \xrightarrow{\lambda_{y}} \mathrm{Z}
$$

At equilibrium

$$
\begin{aligned}
\lambda_{x} \mathrm{~N}_{x} & =\lambda_{y} \mathrm{~N}_{y} \\
\mathrm{~N}_{y} & =\frac{\lambda_{x}}{\lambda_{y}} \times N_{x} \\
& =\frac{\left(t_{1 / 2}\right)_{y}}{\left(t_{1 / 2}\right)_{x}} \times N_{x} \\
& =\frac{20}{40000} \times 4 \times 10^{20} \\
& =2 \times 10^{17}
\end{aligned}
$$

9. (b)

Let the ratio is, $\mathrm{M}:(\mathrm{M}+1):(\mathrm{M}+2)=x: y: z$
Mean atomic mass $=\frac{M \times x+(M+1) \times y+(M+2) \times z}{(x+y+z)}$
$\mathrm{M}+0.5=\frac{x M+y(M+1)+z(M+2)}{(4+1+1)}$
$=\frac{4 M+1(M+1)+1(M+2)}{6}$
$=\frac{6 M+3}{6}=\frac{3(2 M+1)}{6}$
$=M+\frac{1}{2}=M+0.05=R H S$
Hence, "b" is the correct option
10. (a) (c)
$\operatorname{mvr}=\frac{n h}{2 \pi}$
$\mathrm{E}_{\mathrm{n}}=\mathrm{E}_{1} \times \frac{z^{2}}{n^{2}}$

The Best Online Coaching for JEE $\cdot$ NEET $\cdot$ CBSE Prep www.misostudy.com
( 8929803804 | support@misostudy.com

## MATHEMATICS

## JEE Advanced 2021-22 CRASH COURSE

JEE Advanced crash courses provides a preparation strategy \& direction, a speedy revision and getting a high score for JEE Advanced. It is a focused course for the JEE Advanced aspirant's full preparation through a final mock test with important exam pattern, solving past questions and emphasize on the formulas to crack the JEE Advanced Exam.
© Important problem-solving and revision of all important topics with the last 7 years JEE Advanced analysis. ©Providing problem-solving tips and tricks for the exam. © 100\% JEE Advanced pattern questions with detailed solutions. ©Those questions are the focus on chapters with a high weight.

- Misconceptions and repeated errors are cleared by the faculties. ©The questions of compete syllabus designed by the experienced Misostudy faculty team. © Boosts confidence in students so that they can score well.

1. If $z, z_{2}$ are non-zero complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{1}+z_{2}\right|$ then $z_{1} / z_{2}$ can be
(a) 1
(b) $\omega$
(c) $\omega^{2}$
(d) -1
2. Modulus of complex number whose reciprocal is Match the entries in Column I with entries in Column II

## Column-I

(a) $\frac{1}{a}+\frac{1}{b+i c}$
(b) $\frac{1}{a-i b}-\frac{1}{a-i c}$
(c) $\frac{b}{a+i b}+\frac{c}{a-i c}$
(d) $\frac{1}{a+i b+i c}$
(p) $\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|b-c|}$
(q) $\sqrt{a^{2}+(b+c)^{2}}$
(r) $\frac{|a| \sqrt{b^{2}+c^{2}}}{\sqrt{(a+b)^{2}+c^{2}}}$

## Column-II

(s) $\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|a||b+c|}$

|  | p | q | r | S |
| :---: | :---: | :---: | :---: | :---: |
| (a) | (D) | ( ${ }^{\text {a }}$ | (r) | (5) |
| (b) | (D) | ( ${ }^{\text {a }}$ | (r) | (S) |
| (c) | (D) | (9) | (r) | (S) |
| (d) | (D) | (9) | (r) | (S) |

3. Let $\alpha, \beta$ be roots of the equation $a x^{2}+b x+c=0$, then equation whose roots are Match the entries in Column-I with entries in Column-II

## Column-I

## Column-II

(a) $-1 / \alpha,-1 / \beta$
(p) $a x^{2}+2 b x+4 c=0$
(b) $-\alpha,-\beta$
(q) $a^{2} x^{2}+\left(2 a c-b^{2}\right)+c^{2}=0$
(c) $\alpha^{2}, \beta^{2}$
(r) $c x^{2}-b x+a=0$
(d) $2 \alpha, 2 \beta$
(s) $a x^{2}-b x+c=0$
(a) q r s
(a) © (®) ${ }^{\text {( }) ~(~}{ }^{\text {( }}$
(b) © (®) ${ }^{\square}$ ( ${ }^{\text {( }}$
(c) (D) (a) ${ }^{(1)}$ (S)
(d) (D) (4) © ( ${ }^{\text {( }}$
4. Statement-I : If all the four roots of $x^{4}-4 x^{3}+a x^{2}-b x+1=0$ are positive, than $a=6$ and $b=4$.
Statement-II : If polynomial equation $P(x)=0$ has four positive roots, then the polynomial equation $P^{\prime}(x)=0$ has atleast 3 positive roots.
(a) Statement-I is True, Statement-II is True; Statement-II is correct explanation for Statement-I.
(b) Statement-I is True, Statement-II is true; Statement-II is not a correct explanation for Statement-I.
(c) Statement-I is True, Statement-II is False.
(d) Statement-I is False, Statement-II is True.
5. Let $a, b, c \in \mathbf{C}$ such that $a+b+c=0$.

If $|a|=|b|=|c|=1$, then $|a-b|^{3}+|b-c|^{3}+$ $|c-a|^{3}-3|a-b||b-c||c-a|$ is equal to
6. $a, b, c \in \mathbf{R}$ and $a, b, c$ are in A.P. Match the expression in Column-I with the conditions/properties in Column-II.

## Column-I

## Column-II

(a) $a^{2}, b^{2}, c^{2}$ are in A.P.
(p) $a=b=c$
(b) $a^{2}, b^{2}, c^{2}$ are in G.P.
(q) $-\frac{1}{2} a, b, c$ are in G.P.
(c) $a^{2}, b^{2}, c^{2}$ are in H.P.
(d) $a+b+c=\frac{3}{2}$
(r) $a, b,-\frac{1}{2} c$ are in G.P.
(s) $b=\frac{1}{2}$
$\begin{array}{ccccc} & \mathrm{p} & \mathrm{q} & \mathrm{r} & \mathrm{s} \\ \text { (a) } & \text { (D) } & \text { (9) } & \text { (r) } & \text { (s) }\end{array}$
(b) (D) (a) © ${ }^{\text {( }}$
(c) (D) (a) ${ }^{\text {( }}$ ( ${ }^{\text {( }}$
(d) (®) (a) $\bigcirc$ (ㄷ
7. Suppose four distinct positive numbers $a_{1}, a_{2}, a_{3}, a_{4}$ are in G.P. Let $b_{1}=a_{1}, b_{2}=b_{1}+a_{2}$, $b_{3}=b_{2}+a_{3}$ and $b_{4}=b_{3}+a_{4}$.
Statement-I : The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are neither in A.P. nor in G.P.
Statement-II : The number $b_{1}, b_{2}, b_{3}, b_{4}$ are in H.P.
(a) Statement-I is false and Statement-II is true.
(b) Statement-I is true and Statement-II is false
(c) Statement-I and Statement-II both are true
(d) Statement-I and Statement-II both are false
8. Statement-I : $\frac{1^{2}}{(1)(3)}+\frac{2^{2}}{(3)(5)}+\ldots+\frac{n^{2}}{(2 n-1)(2 n+1)}=\frac{n(n+1)}{2(2 n+1)}$

Statement-II : $\frac{1}{(1)(3)}+\frac{2}{(3)(5)}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{1}{2 n+1}$
(a) Statement-I is false and Statement-II is true.
(b) Statement-I is true and Statement-II is false
(c) Statement-I and Statement-II both are true
(d) Statement-I and Statement-II both are false

## Paragraph Question

9. Given a sequence $t_{1}, t_{2}, \ldots$ if its possible to find a function $f(r)$ such that

$$
t_{r}=f(r+1)-f(r)
$$

then

$$
\sum_{r=1}^{n} t_{r}=f(n+1)-f(1)
$$

(i) Sum of the series $\sum_{r=1}^{\infty} \frac{1}{4 r^{2}-1}$ is
(a) 2
(b) 1
(c) $1 / 2$
(d) $1 / 4$
(ii) If $u_{1}=1, u_{n+1}=2 u_{n}+1$, then $u_{n+1}$ equals
(a) $2^{n}+1$
(b) $2^{n+1}-1$
(c) $2^{n}-2$
(d) $2^{n+1}-2$
(iii) If $x_{n}=1^{2}+(2)\left(2^{2}\right)+3^{2}+(2)\left(4^{2}\right)+\ldots$
$=n(n+1)^{2} / 2$ if $n$ is even, then $\frac{x_{51}}{(13)\left(51^{2}\right)}$ is
10. Let $m$ and $n$ be two positive integers such that $m \geq n$. The number of ways of Match the entries in Column I with entries in Column II

## Column-I

(a) distributing $m$ distinct books among $n$ children
(b) arranging $n$ distinct books at $m$ places
(c) selecting $m$ persons out of $n$ persons so that two particular persons are not selected
(d) number of functions from
$\{1,2,3, \ldots n\}$ to $\{1,2,3, \ldots m\}$
$\begin{array}{llll}\mathrm{p} & \mathrm{q} & \mathrm{r} & \mathrm{s}\end{array}$
(a) (D) (a) © (S)
(b) (D) (C) $\bigcirc$ (S)
(c) (D) (C) $\bigcirc$ (S)
(d) (D) (D) (S)


## Column-II

(p) 0
(q) $m^{n}$
(r) $n^{m}$
(s) $\left({ }^{m} C_{n}\right)(n!)$

## Answer \& Solutions

1. (b),(c)
$\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}$. But $\left|z_{1}\right|=\left|z_{2}\right|=1$
$\therefore \quad\left|\frac{z_{1}}{z_{2}}\right|=1$
Also, $\quad \frac{\left|z_{1}+z_{2}\right|}{\left|z_{2}\right|}=\left|\frac{z_{1}}{z_{2}}+1\right|=1$
$\therefore \quad\left|\frac{z_{1}}{z_{2}}-(0+0 \mathrm{i})\right|=\left|\frac{z_{1}}{z_{2}}-(-1-0 \mathrm{i})\right|=1$
$\therefore \quad \mathrm{Z}_{1} / \mathrm{z}_{2}$ lies on $\perp$ bisector of line segment joining $0+0 \mathrm{i} \&(-1+0 \mathrm{i})$

$\therefore \quad \operatorname{Re}\left(\mathrm{z}_{1} / \mathrm{z}_{2}\right)=-1 / 2$
$\therefore \quad \mathrm{Z}_{1} / \mathrm{z}_{2}=-1 / 2+$ ai
But , $\quad\left|\frac{z_{1}}{z_{2}}\right|=1$
$\therefore \quad \mid-1 / 2+$ ai $\mid=1$
$\Rightarrow \quad \frac{1}{4}+a^{2}=1 \Rightarrow a^{2}=3 / 4 \Rightarrow a= \pm \sqrt{3} / 2$
$\therefore \quad \frac{z_{1}}{z_{2}}=-1 / 2 \pm \frac{\sqrt{3}}{2} 1$
$=\dot{\omega}, \omega^{2}$
2. (a) $\rightarrow$ (r),(b) $\rightarrow$ (p),(c) $\rightarrow(\mathrm{s}),(\mathrm{d}) \rightarrow(\mathrm{q})$
(a)

$$
\begin{array}{ll} 
& \left|\frac{\mathrm{a}+\mathrm{b}+\mathrm{i} \mathrm{c}}{\mathrm{a}(\mathrm{~b}+\mathrm{i} \mathrm{c})}\right|=|1 / z| \\
\Rightarrow & \frac{1}{|z|}=\frac{\sqrt{(\mathrm{a}+\mathrm{b})^{2}+\mathrm{c}^{2}}}{|\mathrm{a}| \sqrt{\mathrm{b}^{2}+\mathrm{c}^{2}}} \\
\therefore & |z|=\frac{|a| \sqrt{b^{2}+c^{2}}}{\sqrt{(a+b)^{2}+c^{2}}} \\
& a \rightarrow r
\end{array}
$$

(b)

$$
\left|\frac{1}{z}\right|=\left|\frac{a-i c-a+i b}{(a-i b)(a-i c)}\right|
$$

$$
\frac{1}{|z|}=\frac{|i(b-c)|}{|a-i b||a-i c|}=\frac{|b-c|}{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}
$$

$\therefore \quad|z|=\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|b-c|}$

$$
b \rightarrow p
$$

(c) $\quad\left|\frac{1}{z}\right|=\left|\frac{a b-i b+a c+i b c}{(a+i b)(a-i b)}\right|$

$$
=\frac{|a(b+c)|}{|(a+i b)(a-i c)|}
$$

$$
\frac{1}{|z|}=\frac{|a||b+c|}{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}
$$

$$
|z|=\frac{\sqrt{a^{2}+b^{2}} \sqrt{a^{2}+c^{2}}}{|a||b+c|}
$$

$$
c \rightarrow s
$$

(d)

$$
\begin{array}{ll}
\text { (d) } & \left|\frac{1}{z}\right|=\left|\frac{1}{a+i(b+c)}\right| \\
& \frac{1}{|z|}=\frac{1}{\sqrt{a^{2}+i(b+c)^{2}}} \\
\therefore & \\
& \\
& \\
& \\
& d \rightarrow q \mid=\sqrt{a^{2}+(b+c)^{2}}
\end{array}
$$

3. (a) $\rightarrow$ (r),(b) $\rightarrow$ (s),(c) $\rightarrow$ (q),(d) $\rightarrow$ (p)
(a) Replace $x$ by $-1 / x$ in $a x^{2}+\mathrm{b} x+\mathrm{c}=0$ to get $\mathrm{a}-\mathrm{b} x+\mathrm{c} x^{2}=0$.

$$
\mathrm{a} \rightarrow \mathrm{r}
$$

(b) Replace $x$ by $-x$ in $a x^{2}+b x+c=o$ to get $a x^{2}-b x+c^{2}=0$

$$
\mathrm{b} \rightarrow \mathrm{~s}
$$

(c) Replace $x$ by $\sqrt{x}$ in $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=\mathrm{o}$ to get $\mathrm{a}^{2} x^{2}+\left(2 \mathrm{ac}-\mathrm{b}^{2}\right) x+\mathrm{c}^{2}=0$

$$
c \quad \rightarrow \quad \mathrm{q}
$$

(d) Replace $x$ by $x / 2$ in $\mathrm{a}^{2}+\mathrm{b} x+\mathrm{c}=\mathrm{o}$ to get $\mathrm{ax}+2 \mathrm{~b} x+4 \mathrm{c}=0$

$$
\mathrm{d} \rightarrow \mathrm{q}
$$

4. (b)
let $x_{1}, x_{2}, x_{3}, x_{4}$ be the 4 roots of $x^{4}-4 x^{3}+\mathrm{a} x^{2}-\mathrm{b} x+1=\mathrm{O}$

$$
\begin{array}{ll}
\therefore & \begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}=4 \\
x_{1} x_{2} x_{3} x_{4}=1
\end{array} \\
\therefore & \underbrace{\frac{1}{4}\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}\right)}_{4} \\
\therefore & \text { A.M. of } \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}=1
\end{array} \quad \begin{aligned}
& \text { G.M. of } \mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}=1
\end{aligned}
$$

```
\(\therefore \quad x^{4}-4 x^{3}+b x^{2}-\mathrm{b} x+1=(\mathrm{x}-1)^{4}\)
\(\Rightarrow \quad a=6 \& b=4\)
```

Also, Between any 2 roots of $\mathrm{P}(\mathrm{x})$ lies one root of $\mathrm{P}^{\prime}(x)$ where $\mathrm{P}(\mathrm{x})$ is a polynomial
$\therefore \quad$ Statement $1 \& 2$ both are true (b)
5. The integer 0

$$
\begin{array}{ll} 
& |b-c|^{2}+|b+c|^{2}=2\left(|b|^{2}+|c|^{2}\right) \\
& |b-c|^{2}+|-a|^{2}=2(1+1)=1 \\
\therefore & |b-c|^{2}=3 \\
& |b-c|=\sqrt{3}=|a-b|-|a-c| \\
\therefore & |a-b|^{3}+|b-c|^{3}+|c-a|^{3}-3|a-b||b-c||c-a| \\
& 3 \sqrt{3}+3 \sqrt{3}+3 \sqrt{3}-3 \sqrt{3} \sqrt{3} \sqrt{3}=0 .
\end{array}
$$

6. 

$$
\begin{aligned}
(\mathrm{a}) \rightarrow & (\mathrm{p}),(\mathrm{b}) \rightarrow(\mathrm{p}),(\mathrm{c}) \rightarrow(\mathrm{p}, \mathrm{q}, \mathrm{r}),(\mathrm{d}) \rightarrow(\mathrm{s}) \\
& 2 \mathrm{~b}=\mathrm{a}+\mathrm{c} \\
\& & 2 \mathrm{~b}^{2}=\mathrm{a}^{2}+\mathrm{c}^{2}
\end{aligned}
$$

(a) $\quad(\mathrm{a}+\mathrm{c})^{2}=(2 \mathrm{~b})^{2}$

$$
=4 b^{2}
$$

$$
=2\left(2 b^{2}\right)
$$

$\mathrm{a}^{2}+\mathrm{c}^{2}+2 \mathrm{ac}=2 \mathrm{a}^{2}+2 \mathrm{c}^{2}(\mathrm{a}-\mathrm{c})^{2}=0$
$\Rightarrow \quad a=c$ but $2 b=a+c$
$\Rightarrow \quad \mathrm{a}=\mathrm{b}=\mathrm{c}$
$\mathrm{a} \rightarrow \mathrm{p}$
(b) $\quad\left(b^{2}\right)^{2}=a^{2} c^{2}$
$b^{2}= \pm \mathrm{ac}$
$\therefore \quad \mathrm{b}^{2}=\mathrm{ac}$
$\Rightarrow \quad a, b, c$ are in GP
Already, $\quad \mathrm{a}, \mathrm{b}, \mathrm{c}$ are in ap
$\therefore \quad a=b=c$
$\therefore \quad \mathrm{b} \rightarrow \mathrm{p}$.
(c)
$\mathrm{b}^{2}=\frac{2 a^{2} c^{2}}{a^{2}+c^{2}}$
but, $\quad \mathrm{b}^{2}=\left(\frac{a+c}{2}\right)^{2}$
$\left(\frac{a+c}{4}\right)^{2}=\frac{2 a^{2} c^{2}}{a^{2}+c^{2}}$

```
\(\left.\xrightarrow[\substack{\text {-a } \\ \frac{-a}{2}, \mathrm{~b}, \mathrm{c} \text { are in GP } \\ \text { or }}]{\left((\mathrm{a}+\mathrm{c})^{2}+2 \mathrm{ac}\right),} \quad(\mathrm{a}-\mathrm{c})^{2}\right)=0\)
    \(\mathrm{a}, \mathrm{b},-\mathrm{c} / 2\) are in GP
                                    \(\mathrm{c} \rightarrow \mathrm{p}, \mathrm{q}, \mathrm{r}\).
\[
\begin{array}{ll}
\text { (d) } & a+b+c=3 / 2 \\
& b+2 b=3 / 2 \\
& 3 b=3 / 2 \\
\therefore & b=1 / 2 \\
\therefore & d \rightarrow s
\end{array}
\]
```

7. (b)

Let $a_{1}, a_{2}, a_{3}, a_{4}$, be in GP
$\therefore \quad a_{1}=a, a_{2}=a r, a_{3}=a r^{2}, a^{4}=a r^{3}$ with $r=$ common ratio.
$\therefore \quad \mathrm{b}_{1}=\mathrm{a}$
$\mathrm{b}_{2}=\mathrm{a}+\mathrm{ar}=\mathrm{a}(1+\mathrm{r})$
$\mathrm{b}_{3}=\mathrm{a}+\mathrm{ar}+\mathrm{ar}^{2}$
$=a\left(1+\lambda+\lambda^{2}\right)$

$$
\mathrm{b} 4=\mathrm{a}\left(1+\lambda+\lambda^{2}+\lambda^{3}\right)
$$

Now,

$$
\mathrm{b}_{2}-\mathrm{b}_{1} \neq \mathrm{b}_{3}-\mathrm{b}_{2}
$$

$\therefore \quad \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}$ are not in AP
Also, $\quad \frac{b_{2}}{b_{1}} \neq \frac{b_{3}}{b_{2}}$
$\therefore \quad \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}$ are not in GP.
Also, $\quad 1 / b_{2}-1 / b_{1} \neq 1 / b_{3}-1 / b_{2}$
$\therefore \quad \frac{1}{b_{1}}, \frac{1}{b_{2}}, \frac{1}{b_{3}}, \frac{1}{b_{4}}$ are in AP
$\therefore \quad \mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}, \mathrm{~b}_{4}$ are not in H.P
$\therefore \quad$ Statement (1) is true \& (2) statement is false
8. (b)

$$
\begin{aligned}
& \operatorname{tr}=\frac{r^{2}}{(2 r-1)(2 r+1)} \\
& 4 \operatorname{tr}=\frac{4 r^{2}-1+1}{(2 r-1)(2 r+1)} \\
& 4 \operatorname{tr}=1+\frac{1}{2}\left(\frac{1}{(2 r-1)(2 r+1)}\right) \\
& 4 \sum_{r=1}^{n} t r \quad=\sum_{r=1}^{n} 1+\frac{1}{2} \sum_{r=1}^{n} \frac{1}{(2 r-1)(2 r+1)} \\
& 4 \sum_{r=1}^{n} t r \quad=n+\frac{1}{2}\left(\frac{1}{1}-\frac{2}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\ldots \frac{-1}{2 n+1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\mathrm{n}+\frac{1}{2}\left(1-\frac{1}{2 n+1}\right) \\
& =\mathrm{n}+\frac{2}{2 n+1}=\frac{n(2 n+1)+n}{2 n+1} \\
\therefore \quad \sum_{r=1}^{n} t r & =\frac{1}{4}\left(\frac{2 n(n+1)}{2 n+1}\right) \\
& =\frac{2 n(n+1)}{2(2 n+1)}
\end{aligned}
$$

$$
\text { And, } \begin{aligned}
\quad & t r=\frac{1}{(2 r-1)(2 r+1)} \\
& =\frac{1}{2}\left(\frac{1}{2 r-1}-\frac{1}{2 r+1}\right) \\
\sum_{r=1}^{n} t r= & \frac{1}{2}\left(1-\frac{1}{2 n+1}\right) \\
& =\frac{n}{2 n+1}
\end{aligned}
$$

$\therefore$ Statement (1) is true, Statement (2) is false.
9. $(1) \rightarrow(\mathrm{c}),(2) \rightarrow(\mathrm{b}),(3) \rightarrow(2)$
(1)

$$
\begin{aligned}
& \sum_{r=1}^{\infty} \frac{1}{4 r^{2}-1}=\sum_{r=1}^{\infty} \frac{1}{(2 r-1)(2 r+1)} \\
& =\lim _{n \rightarrow \infty} \frac{1}{2}\left(\sum_{r=1}^{n}\left(\frac{1}{2 r-1}-\frac{1}{2 r+1}\right)\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{2}\left(1-\frac{1}{2 n+1}\right)=1 / 2
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{n}+1}-\mathrm{Un}=2 \mathrm{Un}
\end{aligned} \begin{aligned}
&+1-2 \mathrm{U}_{\mathrm{n}-1}-1 \\
&= 2 \mathrm{Un}-2 \mathrm{U}_{\mathrm{n}-1} \\
&=2\left(\mathrm{Un}-\mathrm{U}_{\mathrm{n}-1}\right) \\
&=2.2\left(\mathrm{Un}^{2}-1-\mathrm{Un}^{2}-2\right) \\
&= 2.2\left(\mathrm{U}_{\mathrm{n}-1}-\mathrm{U}_{\mathrm{n}-2}\right) \ldots \\
&=2^{\mathrm{n}-1}\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)=2^{\mathrm{n}-1}(3-1) \\
& \quad=2^{\mathrm{n}}
\end{aligned} \quad \begin{aligned}
\therefore \mathrm{U}_{\mathrm{n}+1} & =2^{\mathrm{n}}+\mathrm{U}_{\mathrm{n}}=2^{\mathrm{n}}+2^{\mathrm{n}-1}+\mathrm{U}_{\mathrm{n}-1} \\
& =2^{\mathrm{n}}+2^{\mathrm{n}-1}+2^{\mathrm{n}-2}+\mathrm{U}_{\mathrm{n}-2} \\
& =2^{\mathrm{n}}+2^{\mathrm{n}-1}+\ldots .+2^{1}+\mathrm{U}_{1}=2\left(\frac{2^{n}-1}{2-1}\right)+1=2^{n+1}-1
\end{aligned}
$$

(3)

$$
\begin{aligned}
& x_{51}=x_{50}+51^{2} \\
& =\frac{25(51)^{2}}{2}+51^{2}
\end{aligned}
$$

The Best Online Coaching for JEE - NEET - CBSE Prep www.misostudy.com
© 8929803804 | support@misostudy.com

$$
\begin{aligned}
& =25(51)^{2}+51 \\
& =51^{2} \times 26=51^{2} \times 13 \times 2 \\
& \quad \frac{x_{51}}{13 \times 51^{2}}=2
\end{aligned}
$$

10. (a) $\rightarrow$ (r), (b) $\rightarrow$ (s),(c) $\rightarrow$ (p),(d) $\rightarrow$ (q)
(1) m disticut books can be distributed among n children $=\mathrm{n}^{\mathrm{m}}$ ways

$$
\text { (2) }{ }^{m} C_{n} \times n!
$$

(3) Out of $n$ persons, 2 are not selected
$\therefore \quad \mathrm{m}$ persons are to be
selected from $\mathrm{n}-2$ persons. But, $\mathrm{m} \geq \mathrm{n}>\mathrm{n}-2 \Rightarrow \mathrm{~m}>\mathrm{n}-2$
$\therefore \quad$ Not possible
(4) Each members of domain can be mapped in $m$ ways \& domain has $n$ members
$\therefore \quad$ No of maps $=\mathrm{m}^{\mathrm{n}}$

