SAMPLE PAPER

2019 JEE ADVANCED

CHEMISTRY

Roll	No.				
NUI	110.				

Section-1 (Maximum Marks : 12)

- (i) This section contains **TWO** (02) paragraphs. Based on each paragraph, there are *TWO* (02) questions.
- (ii) Each question has FOUR options. ONLY ONE of these four options corresponds to the correct answer.
- (iii) For each question, choose the option corresponding to the correct answer.
- *(iv) Answer to each question will be evaluated according to the following marking scheme:*
- (v) Full Marks : +3 If ONLY the correct option is chosen.
- (vi) Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
- (vii) Negative Marks : -1 In all other cases.

P with CH₃MgBr (excess) in $(C_2H_5)_2O$ followed by addition of H₂O gives Q. The compound Q on treatment with H₂SO₄ at 0 °C gives R. The reaction of R with CH₃COCl in the presence of anhydrous AlCl₃ in CH₂Cl₂ followed by treatment with H₂O produces compound S. [Et in compound P is ethyl group].

- 1. The reactions, \boldsymbol{Q} to \boldsymbol{R} and \boldsymbol{R} to $\boldsymbol{S},$ are
 - (a) Friedel-Crafts alkylation and Friedel-Crafts acylation
 - (b) dehydration and Friedel-Crafts acylation
 - (c) Friedel-Crafts alkylation, dehydration and Friedel-Crafts acylation
 - (d) aromatic sulphonation and Friedel-Crafts acylation

2. The products S is

The reactions of Cl_2 gas with cold dilute and hot concentrated NaOH in water give sodium salts of two (different) oxoacids of chlorine P and Q, respectively. The Cl_2 gas reacts with SO_2 gas, in presence of charcoal, to give a product R. R reacts with white phosphorus to give a compound S. On hydrolysis, S give an oxoacid of phosphorus, T.

- 3. R, S and T, respectively are
 - (a) SO₂Cl₂, PCl₅ and H₃PO₄
 - (b) SO_2Cl_2 , PCl_3 and H_3PO_3
 - (c) SOCl₂, PCl₅ and H_3PO_2
 - (d) SOCl₂, PCl₅ and H₃PO₄
- 4. P and Q, respectively, are the sodium salts of
 - (a) hypochlorus and chloric acids
 - (b) hypochlorus and chlorus acids
 - (c) chloric and perchloric acids
 - (d) chloric and hypochlorus acid

Section-2 (Maximum Marks : 24)

- (i) This section contains 8 question.
- (ii) Each question has 4 options (a), (b), (c), and (d). **ONLY ONE** of these four options is correct.
- (iii) For each question, darken the bubble corresponding to the correct option in the **OMR**.
- (iv) For each question, marks will be awarded in one of the following categories: Full Marks : +3 If, only the bubble corresponding to the correct option is darkened. Zero Marks : 0 If none of the bubbles is darkened. Negative Marks : -1 In all other cases.

5. Reagent(s) which can be used to bring about the following transformation is (are)

(d) Raney Ni/H₂ in THF

6. In the following reactions, the product S is

7. Pure water freezes at 273 K and 1 bar. The addition of 34.5 g of ethanol to 500 g of water changes the freezing point of the solution. Use the freezing point depression constant of water as 2 K kg mol⁻¹. The figures shown below represent plots of vapour pressure (V.P.) versus temperature (T) [Molecular weight of ethanol is 46 g mol⁻¹]. Among the following, the option representing change in the freezing point is

- 8. For the following cell Zn(s) | ZnSO₄(aq) || CuSO₄(aq) | Cu(s) when the concentration of Zn²⁺ is 10 times the concentration of Cu²⁺, the expression for ΔG (in J mol⁻¹) is [F is Faraday constant, R is gas constant, T is temperature, E° (cell) = 1.1 V]
 (a) 2.303 RT + 1.1 F
 (b) 1.1 F
 (c) 2.303 RT 2.2 F
 (d) -2.2 F
 - (d) -2.2 F
- 9. According to molecular orbital theory
 - (a) C_2^{2-} is expected to be diamagnetic
 - (b) $O_2^{2^+}$ is expected to have a longer bond length than O_2
 - (c) N_2^+ and N_2^- have the same bond order
 - (d) He_2^+ has the same energy as two isolated He atoms
- 10. The qualitative sketches I, II and III given below show the variation of surface tension with molar concentration of three different aqueous solutions KCl, CH₃OH and CH₃(CH₂)₁₁OSO₃⁻ Na⁺ at room temperature. The correct assignment of the sketches is

- 11. The K_{sp} of Ag_2CrO_4 is 1.1×10^{-12} at 298 K. The solubility (in mol/L) of Ag_2CrO_4 in0.1 M $AgNO_3$ solution is
 - (a) 1.1×10^{-11}
 - (b) 1.1×10^{-10}
 - (c) 1.1×10^{-12}
 - (d) 1.1×10^{-9}

12. The correct stability order for the following species is

Section-3 (Maximum Marks : 24)

- (i) This section contains SIX (06) questions.
- (ii) Each question has FOUR options for correct answer(s). **ONE OR MORE THAN ONE** of these four option(s) is (are) correct option(s).
- (iii) For each question, choose the correct option(s) to answer the question.
- *(iv)* Answer to each question will be evaluated according to the following marking scheme:

Full Marks : +4 If only (all) the correct option(s) is (are) chosen.

Partial Marks : +3 If all the four options are correct but ONLY three options are chosen.

Partial Marks : +2 If three or more options are correct but ONLY two options are chosen, both of which are correct options.

Partial Marks : +1 If two or more options are correct but ONLY one option is chosen and it is a correct option.

Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered). Negative Marks : -2 In all other cases.

(v) For Example: If first, third and fourth are the ONLY three correct options for a question with second option being an incorrect option; selecting only all the three correct options will result in +4 marks. Selecting only two of the three correct options (e.g. the first and fourth options), without selecting any incorrect option (second option in this case), will result in +2 marks. Selecting only one of the three correct option (second option in this case), will result in +1 marks. Selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option (second option in this case), will result in +1 marks. Selecting any incorrect option(s) (second option in this case), with or without selection of any correct option(s) will result in -2 marks.

MIS**O**STUDY.COM

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

13. For the following compounds, the correct statement(s) with respect to nucleophilic substitution reactions is (are).

- (a) I and II follow S_{N^2} mechanism
- (b) compound IV undergoes inversion of configuration
- (c) the order of reactivity for I, III and IV is : IV > I > III
- (d) I and III follow S_{N^1} mechanism

14. The CORRECT statement(s) for cubic closed packed (ccp) three-dimensional structure is (are)

- (a) The number of neighbours of an atom present in the topmost layer is 12
- (b) The efficiency of the atom packing is 74%
- (c) The number of octahedral and tetrahedral voids per atom are 1 and 2 respectively
- (d) The unit cell edge length is $2\sqrt{2}$ times the radius of the atom
- 15. The rate constant of a reaction is given by $k = 2.1 \times 10^{10} \exp(-2700/\text{RT})$ It mean that
 - (a) log k vs. 1?T will be a straight line with slope = $-\frac{2700}{2.303R}$
 - (b) log k vs. 1/T will be straight line with intercept on log k axis = 2.1×10^{10}
 - (c) The number of effective collisions are 2.1×10^{10} cm⁻³ sec⁻¹
 - (d) Half life of the reaction increases with increase of temperature
- 16. The correct statement(s) about Cr^{2+} and Mn^{3+} is (are) [Atomic numbers of Cr = 24 and Mn = 25]
 - (a) Cr^{2+} is a reducing agent
 - (b) Mn³⁺ is an oxidizing agent
 - (c) Both Cr^{2+} and Mn^{3+} exhibit d^4 electronic configuration
 - (d) When Cr^{2+} is used as a reducing agent, the chromium ion attains d^5 configuration
- 17. The pair(s) of coordination complexes/ions exhibiting the same kind of isomerism is(are)
 - (a) $[Cr(NH_3)_5Cl] Cl_2$ and $[Cr(NH_3)_4Cl_2] Cl$
 - (b) $[Co(NH_3)_4Cl_2]^+$ and $[Pt(NH_3)_2(H_2O) Cl]^-$
 - (c) $[CoBr_2Cl_2]^{2-}$ and $[PtBr_2Cl_2]^{2-}$
 - (d) $[Pt(NH_3)_3(NO_3)]$ Cl and $[Pt(NH_3)_3Cl]$ Br

18. An ideal gas in a thermally insulated vessel at internal pressure = P_1 , volume = V_1 and absolute temperature = T_1 expands irreversibly against zero external pressure, as shown in the diagram. The final internal pressure, volume and absolute temperature of gas are P_2 , V_2 and T_2 respectively. For this expansion,

