## SAMPLE PAPER

# 2019 JEE ADVANCED

#### **MATHEMATICS**

SET-1

|       |      |  | <b>&gt;</b> |  |  |
|-------|------|--|-------------|--|--|
|       |      |  |             |  |  |
|       |      |  | 7.2         |  |  |
| Roll  | No   |  |             |  |  |
| 14011 | 110. |  |             |  |  |

## Section 1 (Maximum Marks: 28)

- (i) This section contains **SEVEN** questions.
- (ii) Each question has **FOUR** options (a), (b), (c) and (d). **ONE OR MORE THAN ONE** of these four options is correct.
- (iii) For each question, darken the bubble corresponding to the correct option in the ORS.
- (iv) For each question, marks will be awarded in one of the following categories:

Full Marks: +4 If only the bubble corresponding to the correct option is darkened.

Partial Marks: +1 For darkening a bubble corresponding to each correct option,

provided NO incorrect option is darkened.

Zero Marks : 0 If none of the bubbles is darkened.

Negative Marks: -2 In all other cases.

- (v) For example, if (a), (c) and (d) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (a) and (d) will result in +2 marks; and darkening (a) and (b) will result in -2 marks, as a wrong option in also darkened.
- 1. If z,  $z_2$  are non-zero complex numbers such that

$$|z_1| = |z_2| = |z_1 + z_2|$$
 then  $z_1/z_2$  can be

- (a) 1
- (b) ω
- (c)  $\omega^2$
- (d) 1

- 2. If  $\lim_{x\to 0} \frac{a\sin x bx + cx^2 + x^3}{2x^2 \log(1+x) 2x^3 + x^4}$  exists and is finite, then
  - (a) a = b
  - (b) c = 0
  - (c) a = b
  - (d) c = 2
- 3. For two events A and B, if  $P(A) = P(A \mid B) = 1/4$  and  $P(B \mid A) = 1/2$ , then
  - (a) A and B are independent
  - (b) A and B are mutually exclusive
  - (c)  $P(A' \mid B) = 3/4$
  - (d)  $P(B' \mid A') = 1/2$ .
- 4. Let  $F(x) = \int_0^x (t-1) (t-2)^2 dt$ , then
  - (a) (1, -17/12) is a point of minimum
  - (b) (2, -4/3) is a point of inflexion
  - (c) (4/3, -112/81) is a point of inflexion
  - (d) (1, -3) is a point of minimum
- 5. The equation of a tangent to the hyperbola  $3x^2 y^2 = 3$ , parallel to the line y = 2x + 4 is
  - (a) y = 2x + 3
  - (b) y = 2x + 1
  - (c) y = 2x 1
  - (d) y = 2x + 2
- 6. Let f be a differentiable function with range  $(0, \infty)$  and  $g(x) = (f(x))^2 (f(x))^3 + (f(x))^4$  for every  $x \in \mathbb{R}$ . Then
  - (a) g is increasing whenever f is increasing.
  - (b) g is increasing whenever f is decreasing.
  - (c) g is decreasing whenever f is decreasing
  - (d) critical point of g are same as of that of f.
- 7. If  $I = \int \frac{\sqrt{1 + \ln x}}{x \ln x} = a f(x) + \frac{b}{2} \ln \left| \frac{f(x) + c}{f(x) + d} \right| + k$  then
  - (a) c + d = 0
  - (b) a = b
  - (c)  $f(x) = \sqrt{\ln x}$
  - (d)  $f(x) = \sqrt{\ln(ex)}$

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

## Section-2 (Maximum Marks: 15)

- (i) This section contains 5 question.
- (ii) The answer to each question is a **SINGLE DIGIT INTEGER** ranging from 0 to 9, both inclusive.
- (iii) For each question, darken the bubble corresponding to the correct integer in the OMR
- (iv) For each question, marks will be awarded in <u>one of the following categories</u>: Full Marks: +3 If, only the bubble corresponding to the correct option is darkened. Zero Marks: 0 In all other cases.
- 8. For n > 2, let  $C_r = {}^nC_r$ , and  $f(n) = 3C_2 + 5C_4 + 7C_6 + ...$ , then  $2^{-5} f(6)$  equals
- 9. Let

$$f(x) = \begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4\sin 2x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 2x \end{vmatrix}$$

then the maximum value of f(x)

- 10. If the equation  $12x^2 10xy + 2y^2 + 11x 5y + \lambda = 0$  represents a pair of straight lines, then the value of  $\lambda =$
- 11. Given the function  $f(x) = \lim_{n \to \infty} n(x^{1/n} 1)$ , x > 0. Suppose f satisfies 7f(1/x) + kf(x) = 0 then k is equal to
- 12. If the distance between the plane Ax 2y + z = d and the plane containing the lines x-1 y-2 z-3 x-2 y-3 z-4

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and  $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$  is  $\sqrt{6}$ , then  $|d|$  is

#### Section-3 (Maximum Marks: 18)

- (i) This section contains 2 paragraphs.
- (ii) Based on each paragraph, there are two questions.
- (iii) Each question has **FOUR** options (a), (b) (c) (d). **ONLY ONE** of these four options is correct.
- (iv) For each question, darken the bubble corresponding to the correct option in the ORS.
- (v) For each question, marks will be awarded in one of the following categories: Full Marks: +3 If, only the bubble corresponding to the correct option is darkened. Zero Marks: 0 In all other cases.

#### Paragraph for Question Nos. 13 to 15

$$f(x) = \sin \{\cot^{-1} (x + 1)\} - \cos (\tan^{-1} x)$$

$$a = \cos \tan^{-1} \sin \cot^{-1} x$$

$$b = \cos (2 \cos^{-1} x + \sin^{-1} x)$$

- 13. The value of x for which f(x) = 0 is
  - (a) 1/2
  - (b) 0
  - (c) 1/2
  - (d) 1
- 14. If f(x) = 0 then  $a^2$  is equal to
  - (a) 1/2
  - (b) 2/3
  - (c) 5/9
  - (d) 9/5
- 15. If  $a^2 = 26/51$ , then  $b^2$  is equal to
  - (a) 1/25
  - (b) 24/25
  - (c) 25/26
  - (d) 50/51

#### Paragraph for Question Nos. 16 to 18

Given a sequence  $t_1$ ,  $t_2$ , ... if its possible to find a function f(r) such that

$$t_r = f(r + 1) - f(r)$$

then

$$\sum_{r=1}^{n} t_r = f(n + 1) - f(1)$$

- 16. Sum of the series  $\sum_{r=1}^{\infty} \frac{1}{4r^2 1}$  is
  - (a) 2
  - (b) 1
  - (c) 1/2
  - (d) 1/4
- 17. If  $u_1 = 1$ ,  $u_{n+1} = 2u_n + 1$ , then  $u_{n+1}$  equals
  - (a)  $2^n + 1$
  - (b)  $2^{n+1} 1$
  - (c)  $2^n 2$
  - (d)  $2^{n+1} 2$

18. Sum of the  $\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)}$  is

- (a) 1
- (b) 1/2
- (c) 1/4
- (d) 1/8

