SAMPLE PAPER

PHYSICS

Roll No.				

General Instructions

- (i) This test consists of 60 questions.
- (ii) Each question is allotted 1 mark for correct response.
- (iii) -1/3 mark will be deducted for indicating incorrect response of each question. No credit will be given for the questions not answered or marked for review .
- (iv) The duration of the examination shall be $3\frac{1}{2}$ hours.
- 1. What is the dimensions of impedance ?
 - (a) $ML^2T^{-3}I^{-3}$
 - (b) $M^{-1}L^{-2}T^{3}I^{2}$
 - (c) $ML^{3}T^{-3}I^{-3}$
 - (d) $M^{-1}L^{-3}T^{3}I^{2}$
- 2. A boy of mass 40kg is standing in a lift, which is moving downwards with an acceleration 9.8m/s^2 the apparent weight of the boy is (Take g = 9. m/s²):
 - (a) 40 \times 9.8 N
 - (b) 0 N
 - (c) (40/9.8) N
 - (d) 40 N.
- 3. A body of mass 5kg is raised vertically up a height of 10 m by a force of 170 N. The velocity of the body at this height will be :
 - (a) 15 m/s
 - (b) 37 m/s
 - (c) 9.8 m/s
 - (d) 22 m/s

4. What is the moment of inertia for a solid sphere with respect to a tangent touching to its surface:

(a)
$$\frac{2}{5}MR^2$$

(b) $\frac{7}{5}MR^2$
(c) $\frac{2}{3}MR^2$
(d) $\frac{5}{3}MR^2$

5. Moment of inertia of a uniform cylindrical wire about its geometrical axis is :

(a) MR²
(b)
$$\frac{1}{2}$$
MR²
(c) $\frac{2}{5}$ MR²
(d) $\frac{1}{4}$ MR²

- 6. If a solid sphere of mass 1kg and radius 0.1 m rolls without slipping at a uniform velocity of 1 m/s along a straight line on a horizontal floor the kinetic energy is :
 - (a) 7/5J
 - (b) 2/5J
 - (c) 7/10J
 - (d) 1J
- 7. A sphere of mass M and radius R is falling in a viscous fluid the terminal velocity attained by the failing object will be proportional to :
 - (a) R^2
 - (b) R
 - (c) 1/R
 - (d) $1/R^2$
- 8. What is the relative humidity on a day, when partial pressure of water vapour is 0.212×10^5 pa and temperature is 12° C? The saturated vapour pressure of water at this temperature is 0.016×10^5 pa :
 - (a) 68%
 - (b) 52%
 - (c) 25%
 - (d) 75%
- 9. The volume of a gas expands by 0.25 m^3 at a constant pressure of 10^3 N/m^2 The work done is equal to :
 - (a) 250Watt
 - (b) 2.5 erg
 - (c) 250 newton
 - (d) 250 joule

- 10. A certain mass of gas at 273 K is expanded to 81 times its volume under adiabatic conditions. If $\gamma = 1.25$ for the gas then its final temperature is:
 - (a) -182°C
 - (b) $-0^{\circ}C$
 - (c) -235°C
 - (d) $-91^{\circ}C$

11. Critical temperature can be defined as the temperature

- (a) At which the volume of a gas becomes zero
- (b) At which there is no motion between the molecules
- (c) Above which a gas cannot be liquified, no matter however high the pressure may be.
- (d) At which a gas is converted into its liquid state.
- 12. A lightly damped oscillator with a frequency (ω) is set in motion by harmonic driving force of frequency (n). When n < ω , then response of the oscillator is controlled by :
 - (a) Oscillator frequency
 - (b) Spring constant
 - (c) Damping coefficient
 - (d) Inertia of the mass.
- 13. The composition of two simple harmonic motions of equal periods at right angles to each other and with a phase difference of π results in the displacement of the particle along a :
 - (a) Straight line
 - (b) Circle
 - (c) Hexagon
 - (d) Ellipse.
- 14. Newton's formula for the velocity of sound in gases, is :

(a)
$$V = \sqrt{\frac{2p}{\rho}}$$

(b) $V = \sqrt{\frac{p}{\rho}}$
(c) $V = \sqrt{\frac{p}{\rho}}$
(d) $V = \frac{3}{2}\sqrt{\frac{p}{\rho}}$

- 15. The number of waves, contained in unit length of the medium, is called :
 - (a) Wave pulse
 - (b) Wave number
 - (c) Elastic wave
 - (d) Electromagnetic wave

16. In the following diagram, which particle has highest e/m value?

17. The electric filed due to a uniformly charged sphere of radius R as function of the distance from its centre is represented graphically by

- 18. On moving a charge of 20 coulombs by 2cm, 2 J of work is done, then the potential difference b/w the points is :
 - (a) 2.1V
 - (b) 8.V
 - (c) 2.V
 - (d) 0.V
- 19. Potential difference across C2 is:

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

(a)
$$\frac{(C_1 - C_2)V}{C_1 + C_2 + C_3}$$

(b)
$$\frac{(C_1 + C_2)V}{C_1 - C_2 + C_3}$$

- (c) $\frac{(C_1 + 2C_2)V}{C_1 + 2C_2 + C_3}$ (d) $\frac{(C_1 2C_2)V}{C_1 + C_2 + C_3}$

20. In the figure, the equivalent resistance between the points A and B is :

- (a) 8Ω (b) 6Ω
- (c) 2Ω
- (d) 4Ω

21. The heat produced by a 100 W heater in 2 min is equal to :

- (b) 16.3 kcal
- (c) 2.8 kcal
- (d) 14.2 kcal
- 22. A toroid with mean radius R₀' diameter 2a have N turns carrying current I. what is the magnetic filed B out side the toroid :

(a)
$$\frac{M}{2\pi P_0}$$

(b)
$$\frac{MI}{2\pi (P_0 + a)}$$

(c)
$$\frac{MI}{\pi (P_0 + a)}$$

(d) Zero

- 23. The magnetic needle of a tangent galvanometer is deflected at an angle 30° due to a magnet. the horizontal compound of earth's magnetic filed 0.34×10^{-2} T is along the plane of the coil The magnetic intensity is :
 - (a) $1.96 \times 10^{-}T$
 - (b) $1.96 \times 10^4 T$
 - (c) 1.96×10^{-3} T
 - (d) $1.96 \times 10^{5} T$
- 24. A small piece of metal wire is dragged across the gap between the pole pieces of a magnet in 0.4 sec. If magnetic flux between the pole pieces is known to be
 - $8\,\times\,10^{-4}$ Wb, then induced emf in the wire, is :
 - (a) 4×10^{-3} V
 - (b) 8×10^{-3} V
 - (c) 2×10^{-3} V
 - (d) 6×10^{-3} V

25. If frequency of R-L circuit is f then impedance will be :

- (a) $R^2 + (2pfL)^2$
- (b) $R^2 + (2pf^2)^2$
- (c) $(R^2 + Lpf^2)$
- (d) $R^3 + (2pf)^3$

26. Characteristic X-rays are produced due to :

- (a) Transfer of momentum in collision of electrons with target atoms
- (b) Transition of electrons from higher to lower electronic orbits in an atom
- (c) Heating of the target
- (d) Transfer of energy in collision of electrons with atoms in the target
- 27. Achromatic combination of lenses comprises of the two lenses of same material placed 4 cm apart. If focal length of one lens is 25cm, the focal length of other lens is
 - (a) 2 cm
 - (b) 4 cm
 - (c) 6 cm
 - (d) 3 cm

28. In a concave mirror, an object is placed at a distance d_1 From the focus and the image is formed at a distance at a distance d_2 from the focus. Then focal length of the mirror is:

- (a) $\sqrt{d_1 d_2}$
- (b) d_1d_2
- (c) $(d_1 + d_2)/2$
- (d) d_1/d_2
- 29. A glass sheet is kept in the path of one of the ways in a YDSE set-up the fringe pattern shifts downwards. Calculate the thickness of the sheet : (μ = ref. ind of glass, D = shift)
 - (a) $t = dy(\mu 1)D$ (b) $t = (\mu + 1)D/dy$ (c) $t = dy(\mu + 1)D$ (d) $t = (\mu + 1)D/dy$

- 30. In a neon discharge tube 2.9×10^{18} Ne⁺ ions move to the right each second, while 1.2×10^{18} electrons move the left per second, electron charge is 1.6×19^{-19} C. the current in the discharge tube is:
 - (a) 1 A towards right
 - (b) 0.66 A towards right
 - (c) 0.66 A towards left
 - (d) Zero
- 31. A triply ionized beryllium (Be^{3+}) has the same orbital radius as the ground state of hydrogen. then the quantum state n of Be^{3+} is :
 - (a) n = 1
 - (b) n = 2
 - (c) n = 3
 - (d) n = 4
- 32. Consider following reaction $H^1 + Li^7 \rightarrow 2(_2He^4)$. If Be nucleon of $_2He^4$ is 7.06 MeV and energy of proton is 17.28 MeV then B.E per nucleon of $_3Li^7$ is
 - (a) 10.96 MeV
 - (b) 5.60 MeV
 - (c) 5.96 MeV
 - (d) 14.06 MeV
- 33. n-alpha particles per second are emitted from N atoms of a radioactive element. The half-life of the radioactive element is :
 - (a) $\frac{n}{N}s$
 - (b) $\frac{N}{n}s$
 - (c) $\frac{0.693N}{n}s$ (d) $\frac{0.693n}{N}s$
- 34. A zener diode is specified as having a breakdown voltage of 9.1 V, with a maximum power dissipation of 364 mW. What is the maximum current the diode can handle?
 - (a) 40 mA
 - (b) 60 mA
 - (c) 50 mA
 - (d) 45 mA
- 35. A transistor connected at common emitter mode contains load resistance of $5k\Omega$ if the input peak voltage is 5 mV and the current gain is 50, find the voltage gain :
 - (a) 250
 - (b) 500
 - (c) 125
 - (d) 50

MISOSTUDY.COM The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804 36. The output given circuit is:

- (a) $(A+B).\overline{B}$
- (b) (A.B).B
- (c) (A+V).B
- (d) (A.B)+B

37. If modulation index is 1/2 and power of carries wave is 2 W. Then what will be the total power in modulated wave ?

- (a) 0.05 w
- (b) 1 w
- (c) 0.25 w
- (d) 2.25 w

38. Find the area covered by a transmitting antenna of height 50m:

- (a) $320\pi \text{ km}^2$
- (b) 1440 km^2
- (c) 640 π km²
- (d) 120 π km²
- 39. A long straight wire carries 10A d.c current an electron travels perpendicular to the plane of this wire at a distance 0.1 m with velocity $5.0 \times 10^6 \text{ ms}^{-1}$ Force acting on the electron due to current in wire is:
 - (a) Zero N
 - (b) 2.3×10^{-17} N
 - (c) 2.4×10^{-17} N
 - (d) 2.2×10^{-17} N
- 40. A particle of charge q and mass m starts moving from the origin under the action of electric filed $E = E_0 \cdot \hat{i}$ and $\vec{B} = B_0 \cdot \hat{i}$ with a velocity $\vec{V} = \hat{J}_0$. The speed of the particle will become $\sqrt{5/2} v_0$ after a time :

(a)
$$\frac{mV_0}{qE_0}$$

(b)
$$\frac{mv_0}{mv_0}$$

$$2qE_0$$

 $\sqrt{3mv_0}$

(c)
$$\frac{\sqrt{2qE_0}}{2qE_0}$$

(d) $\frac{\sqrt{5mv_0}}{2qE_0}$

The Best Online Coaching for IIT-JEE | NEET Medical | CBSE INQUIRY +91 8929 803 804

Direction : From Q no. 41 to Q no. 60 has a statements of assertion (A) is given followed by a corresponding statement of reason (R). Mark the correct answer.

- (a) If both Assertion & reason are True & the reason is a correct explanation of the assertion.
- (b) If both assertion & reason are true but reason is not a correct explanation of the Assertion.
- (c) If Assertion is True but the reason is false.
- (d) If both Assertion & Reason are False.
- 41. Assertion : KE is conserved at every instant of (elastic) collision. Reason : No deformation of the matter occurs in elastic collision
- 42. Assertion : centre of mass of a system does not move under the action of internal forces. Reason : Internal forces are non conservative forces.
- 43. Assertion : if polar ice melts, days will be longer. Reason : Moment of inertia increases and thus angular velocity decreases
- 44. Assertion :The earth without its atmosphere would be inhospitably cold. Reason : All heat would escape in the absence of atmosphere
- 45. Assertion : A hydrogen filled balloon stops rising after is has attained a certain height in the sky.Reason : The atmospheric pressure decreases with height and becomes zero when maximum

height is attained.

- 46. Assertion : It is not possible for a system, unaided by an external agency to transfer heat from a body at lowerReason : It is not possible to violate the second low of thermodynamics
- 47. Assertion : Magnetic lines forms closed loops in nature. Reason : Mono-magnetic pole does not exist in nature.
- 48. Assertion : The mutual inductance of two coils is doubled if the self inductance of the primary or secondary coil is doubled.
 Reason : Mutual inductance is proportional to the self inductance of primary and secondary coils.
- 49. Assertion : Microscope magnifies the image. Reason : Angular magnification for image is more than object in microscope.
- 50. Assertion : the focal length of objective lens in telescope is much more than that of eye piece. Reason : Telescope has high resolving power due to large focal length.
- Assertion : An electron microscope is based on de Broglie hypothesis.
 Reason : A bean of electrons behaves as wave which can be converged by electric and magnetic lenses.
- 52. Assertion : Wavelength Balmer series belongs to visible spectrum. Reason : In H-spectrum Balmer series belongs to visible.

- 53. Assertion : In a communication system based on amplitude modulation index is kept Reason : It ensures minimum distortion of signal
- 54. Assertion : In the transmission of long distance radio signals. short wave band issued. Reason : In the shorter wavelength attenuation is very less.
- 55. Assertion : During everse biasing a diode does not Conduct current Reason : It narrows the depletion layer
- 56. Assertion : When the temperature of a semiconductor is increased, then its resistance decreases Reason : The energy gap between conduction band and valence band is very small
- 57. Assertion : Y- Radiation emission may occurs after α and B decay. Reason : Energy levels occurs in nucleus.
- 58. Assertion : Size of nucleus is constant in electron scattering or gamma scattering.
 Reason : Electron scattering or gamma scattering is controlled by distribution of charge in nucleus.
- 59. Assertion : A undamped spring-mass system us simplest free vibration system. Reason : It has three degrees of freedom.
- 60. Assertion : Vibrational energy of particle at temperature T is kT. Reason : For every particle, vibrational degree of freedom is 2.

