GOLDEN SAMPLE QUESTIONS

MATHEMATICS For JEE Main 2019 (Set 1)

- 1. The boolean expression $(p \land \neg q) \lor (q \lor (\neg p \land q))$ is equivalent to:
 - (a) $\sim p \land q$
 - (b) $p \wedge q$
 - (c) $p \vee q$
 - (d) $p \wedge \sim q$
- 2. If L_1 is the line of intersection of the planes 2x 2y + 3z 2 = 0, x y + z + 1 = 0 & L_2 is the line of intersection of x + 2y z 3 = 0 & 3x y + 2z 1 = 0 then the distance of the origin from the plane containing the lines L_1 & L_2 is
 - (a) $\frac{1}{2\sqrt{2}}$
 - (b) $\frac{1}{\sqrt{2}}$
 - (c) $\frac{1}{3\sqrt{2}}$
 - (d) $\frac{1}{4\sqrt{2}}$
- 3. Let $k \in \mathbb{Z}$ s.t. the triangle with vertices (k, -3k), (5, k) & (-k, 2) has area 28 sq. units. Then orthocentre of the triangle is:
 - (a) (2, -1/2)
 - (b) (1, 3/4)
 - (c) (1, -3/4)
 - (d) (2, 1/2)

- 4. If \vec{a} & \vec{b} are vectors such that $|\vec{a} + \vec{b}| = \sqrt{29}$ & $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k})$ = $(2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$ then a possible value of $(\vec{a} + \vec{b}) \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
- 5. If a curve y = f(x) passes through the point (1, -1) & satisfies the differential equation y(1 + xy)dx = x dy then
 - f(-1/2) =
 - (a) -2/5
 - (b) -4/5
 - (c) 2/5
 - (d) 4/5